Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Philosophical Logic
  3. Article

Implicit and Explicit Stances in Logic

  • Open Access
  • Published: 16 November 2018
  • volume 48, pages 571–601 (2019)
Download PDF

You have full access to this open access article

Journal of Philosophical Logic Aims and scope Submit manuscript
Implicit and Explicit Stances in Logic
Download PDF
  • Johan van Benthem  ORCID: orcid.org/0000-0002-7048-785X1,2,3 
  • 1462 Accesses

  • 4 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

We identify a pervasive contrast between implicit and explicit stances in logical analysis and system design. Implicit systems change received meanings of logical constants and sometimes also the notion of consequence, while explicit systems conservatively extend classical systems with new vocabulary. We illustrate the contrast for intuitionistic and epistemic logic, then take it further to information dynamics, default reasoning, and other areas, to show its wide scope. This gives a working understanding of the contrast, though we stop short of a formal definition, and acknowledge limitations and borderline cases. Throughout we show how awareness of the two stances suggests new logical systems and new issues about translations between implicit and explicit systems, linking up with foundational concerns about identity of logical systems. But we also show how a practical facility with these complementary working styles has philosophical consequences, as it throws doubt on strong philosophical claims made by just taking one design stance and ignoring alternative ones. We will illustrate the latter benefit for the case of logical pluralism and hyper-intensional semantics.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Andréka, H., Bezhanishvili, N., Németi I., van Benthem, J. (2014). Changing a semantics: opportunism or courage? In Manzano, M., Sain I., Alonso, E. (Eds.) The life and work of Leon Henkin (pp. 307–337). Basel: Birkhaüser Verlag.

  2. Artemov, S. (2007). Justification logic. Technical report TR-2007019. New York: CUNY Graduate Center.

    Google Scholar 

  3. Artemov, S., & Protopopescu, T. (2016). Intuitionistic epistemic logic. Review of Symbolic Logic, 9, 266–298.

    Article  Google Scholar 

  4. Balbiani, P., & Galmiche, D. (2016). About intuitionistic public announcement logic. In Beklemishev, L., Demri S., Maté, A. (Eds.) Proceedings advances in modal logic, Budapest 2016 (pp. 58–77). London: College Publications.

  5. Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In Bonanno, G., van der Hoek W., Wooldridge, M. (Eds.) Texts in logic and games (Vol. 3, pp. 9–58). Amsterdam University Press.

  6. Baltag, A., & Smets, S. (2011). Quantum logic as a dynamic logic. Synthese, 179:2, 285–306.

    Article  Google Scholar 

  7. Baltag, A., & Smets, S. (2017). Modeling correlated information change: from conditional beliefs to quantum conditionals. Soft Computing, 21(6), 1523–1535.

    Article  Google Scholar 

  8. Bar-Hillel, Y., & Carnap, R. (1953). Semantic information. The British Journal for the Philosophy of Science, 4:14, 147–157.

    Article  Google Scholar 

  9. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge: The MIT Press.

    Google Scholar 

  10. Beall, J., & Restall, G. (2006). Logical pluralism. Oxford: Oxford University Press.

    Google Scholar 

  11. van Benthem, J. (1989). Semantic parallels in natural language and computation. In Ebbinghaus, H–D, & et al. (Eds.) Logic colloquium. 1987 (pp. 331–375). NorthHolland, Amsterdam.

  12. van Benthem, J. (1996). Modal logic as a theory of information. In Copeland, J. (Ed.) Logic and reality (pp. 135–168). Oxford: Clarendon Press.

  13. van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  14. van Benthem, J. (2014). Logic in games. Cambridge: The MIT Press.

    Book  Google Scholar 

  15. van Benthem, J., Bezhanishvili, N., Holliday, W. (2017). A bimodal perspective on possibility semantics. Journal of Logic and Computation, 27:5, 1353–1389.

    Google Scholar 

  16. Benthem, J., & Minica, S. (2012). Toward a dynamic logic of questions. Journal of Philosophical Logic, 41(4), 633–669.

    Article  Google Scholar 

  17. Bezhanishvili, G., & Holliday, W. (2017). A semantic hierarchy for intuitionistic logic to appear. In van Dalen, D., Klop, J.W, van Mill, J. (Eds.) Indagationes mathematicae, special issue on L. E. J. Brouwer.

  18. Blackburn, P., Rijke, M., Venema, Y. (2000). Modal logic. Cambridge: Cambridge University Press.

    Google Scholar 

  19. Burgess, J. (1981). Quick completeness proofs for some logics of conditionals. Notre Dame Journal of Formal Logic, 22(1), 76–84.

    Article  Google Scholar 

  20. Ciardelli, I., Groenendijk, J., Roelofsen, F. (2013). Inquisitive semantics: a new notion of meaning. Language and Linguistics Compass, 7(9), 459–476.

    Article  Google Scholar 

  21. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B. (Eds.). (2015). Handbook of logics for knowledge and belief. London: College Publications.

    Google Scholar 

  22. Dosen, K. (1985). Models for stronger normal intuitionistic modal logics. Studia Logica, 44, 39–70.

    Article  Google Scholar 

  23. Eijck, J., & de Vries, F.-J. (1992). Dynamic interpretation and hoare deduction. Journal of Logic, Language and Information, 1, 1–44.

    Article  Google Scholar 

  24. Fernandez, D. (2006). A Polynomial translation of s4 into intuitionistic logic. Journal of Symbolic Logic, 71:3, 989–1001.

    Article  Google Scholar 

  25. Fine, K. (2017). Truthmaker semantics. In Hale, B., Wright C., Miller, A. (Eds.) A companion to the philosophy of language, 2nd Edn. (pp. 556–577). Wiley On-Line Library.

  26. Galatos, N., & Jipsen, P. (2013). Residuated frames with applications to decida-bility. Transactions of the American Mathematical Society, 365, 1219–1249.

    Article  Google Scholar 

  27. Gierasimczuk, N. (2010). Knowing one’s limits, logical analysis of inductive inference dissertation. ILLC, University of Amsterdam.

  28. Girard, P., Liu, F., Seligman, J. (2012). General dynamic dynamic logic. In Proceedings AIML Copenhagen.

  29. Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines Mathematischen Kolloquiums, 4, 39–40.

    Google Scholar 

  30. Goré, R., & Thomson, J. (2017). A correct polynomial translation of s4 into intuitionistic logic’ logic and computation group. Canberra: Australian National University.

    Google Scholar 

  31. Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14(1), 39–100.

    Article  Google Scholar 

  32. Halvorson, H. (2017). The invariant content of equivalent theories. Department of Philosophy, Princeton University, Talk at 6th CSLI Workshop on Logic, Rationality and Intelligent Interaction, Stanford.

  33. Hamami, Y., & Roelofsen, F. (2015). Logics of questions, preface to special issue. Synthese, 192(6), 1581–1584.

    Article  Google Scholar 

  34. Hintikka, J. (1962). Knowledge and belief. Ithaca: Cornell University Press.

    Google Scholar 

  35. Holliday, W. (2012). Knowing what follows: epistemic closure and epistemic logic. Ph.D thesis, Department of Philosophy, Stanford University.

  36. Hoshi, T. (2009). Epistemic dynamics and protocol information. Ph.D. thesis, Department of Philosophy, Stanford University (ILLC-DS-2009-08).

  37. W. & M. Kneale. (1962). The development of logic. Oxford: Oxford University Press.

    Google Scholar 

  38. Kocurek, A. (2018). What can you say? Measuring the expressive power of language. Dissertation, Group in Logic and the Methodology of Science, UC Berkeley.

  39. Kuhn, S., & Weatherson, B. (2018). Notes on some ideas in Lloyd Humberstone’s philosophical applications of modal logic. The Australasian Journal of Logic, 15, 1. https://doi.org/10.26686/ajl.v15i1.4072 https://doi.org/10.26686/ajl.v15i1.4072.

    Article  Google Scholar 

  40. Levesque, H. (1984). A logic of implicit and explicit belief. In Proceedings AAAI-84, (pp. 198–202).

  41. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.

    Google Scholar 

  42. McCarthy, J. (1980). Circumscription – a form of non-monotonic reasoning. Artificial Intelligence, 13, 27–39.

    Article  Google Scholar 

  43. Miller, J., & Moss, L. (2005). The undecidability of iterated modal relativization. Studia Logica, 97, 373–407.

    Article  Google Scholar 

  44. Olkhovikov, G. (2013). Model-theoretic characterization of intuitionistic propositional formulas. Review of Symbolic Logic, 6(2), 348–365.

    Article  Google Scholar 

  45. Parikh, R. (1985). The logic of games. Annals of Discrete Mathematics, 24, 111–140.

    Google Scholar 

  46. Putnam, H. (1968). Is logic empirical? In Cohen, R., & Wartofsky, M. (Eds.) Boston studies in the philosophy of science 5 (pp. 216–241). Dordrecht: Reidel.

  47. Quine, W. (1951). Two Dogmas of empiricism. The Philosophical Review, 60, 20–43.

    Article  Google Scholar 

  48. Restall, G. (2000). Substructural logics. London: Routledge.

    Google Scholar 

  49. Rodenhaüser, B. (2014). A matter of trust: dynamic attitudes in epistemic logic. Dissertation ILLC, University of Amsterdam.

  50. Roelofsen, F., & Cardelli, I. (2015). Inquisitive dynamic epistemic logic. Synthese, 192(6), 1643–1687.

    Article  Google Scholar 

  51. Rumfitt, I. (2015). The boundary stones of thought. Oxford: Oxford University Press.

    Book  Google Scholar 

  52. Shi, Ch. (2018). Reason to believe. Dissertation DS 2018-10 Institute for Logic, Language and Computation, University of Amsterdam.

  53. Shoham, Y. (1988). Reasoning about change: time and change from the standpoint of artificial intelligence. Cambridge: MIT Press.

    Google Scholar 

  54. Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical Studies, 128:1, 169–199.

    Article  Google Scholar 

  55. Troelstra, A., & van Dalen, D. (1988). Constructivism in Mathematics, Vol. 2. North-Holland, Amsterdam.

  56. Veltman, F. (1996). Defaults in upyear semantics. Journal of Philosophical Logic, 25, 221–261. Also appeared in The Philosopher’s Annual, 1997.

    Article  Google Scholar 

  57. Yalcin, S. (2007). Epistemic modals. Mind, 116, 983–1026.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is based on lectures at the Hans Kamp 70 conference in Stuttgart 2010, Advances in Modal Logic, Copenhagen 2012, the Heyting Conference, Amsterdam 2013, the FEW Workshop on Formal Epistemology, Seattle 2017, as well as seminar presentations in Amsterdam, Beijing, New York, and Stanford. I thank members of these audiences for their feedback, as well as the referees of this paper, and Wesley Holliday, Thomas Icard, Steve Kuhn and Sonja Smets.

Author information

Authors and Affiliations

  1. Institute for Logic, Language and Computation, University of Amsterdam, P.O. Box 94242, 1090, GE, Amsterdam, The Netherlands

    Johan van Benthem

  2. Department of Philosophy, Stanford University, Stanford, CA, USA

    Johan van Benthem

  3. Department of Philosophy, Tsinghua University, Beijing, China

    Johan van Benthem

Authors
  1. Johan van Benthem
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Johan van Benthem.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Benthem, J. Implicit and Explicit Stances in Logic. J Philos Logic 48, 571–601 (2019). https://doi.org/10.1007/s10992-018-9485-y

Download citation

  • Received: 17 December 2017

  • Accepted: 24 September 2018

  • Published: 16 November 2018

  • Issue Date: 15 June 2019

  • DOI: https://doi.org/10.1007/s10992-018-9485-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Logic
  • Modality
  • Implicit
  • Explicit
  • Vocabulary
  • Translation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature