Skip to main content

Advertisement

Log in

In Silico and In vitro Analysis of Novel Angiotensin I-Converting Enzyme (ACE) inhibitory Bioactive Peptides Derived from Fermented Camel Milk (Camelus dromedarius)

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

In this study, Lactobacillus bulgaricus NCDC (09) and Lactobacillus fermentum TDS030603 (LBF) were evaluated for their ACE-inhibitory activity and peptides production under optimized conditions from fermented camel milk (Camelus dromedarius). Lactic cultures were evaluated for their pepX activity, proteolytic activity and ACE-inhibitory activity. 09 culture exhibited higher PepX and ACE-inhibitory activity than LBF. 2% rate of inoculation and 12 h of incubation were optimized on the basis of pepX and proteolytic activity. Purified peptides from fermented camel milk were characterized by amino acids profiling through the search in BlastP, Protein information resource (PIR) databases. ACE-inhibitory activity of different peptides from fermented camel milk were also confirmed by the database of antihypertensive peptides (AHTPDB). Fermented camel milk produced by Lactobacillus cultures could be a novel source of ACE-inhibitory peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelgadir SW, Ahmed TK, Dirar HA (1998) The traditional fermented milk products of the Sudan. Rev. Int J Food Microbiol 44:1–13

    Article  CAS  PubMed  Google Scholar 

  • Badkook MM (2013) Fermented Camel Milk Reduces Inflammation in Rats Fed a High-Fat Diet. Int J Health Sci Res 3:7–17

    Google Scholar 

  • Barker WC, Garavelli JS, Hou Z, Huang H, Ledley RS, Mc Garvey PB, Mewes HW, Orcutt BC, Pfeiffer F, Tsugita A, Vinayaka CR, XIO C, Yeh LSL, WU C (2001) Protein Information Resource: a common resource for expert annotation protein data. Nucleic Acids Res 29:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandan RC (2004) Dairy: yogurt. In: Smith JS, Hui YH (eds) Food processing: Principles and applications, Ames. Blackwell Publishing Professional, Iowa, pp 297–300

    Chapter  Google Scholar 

  • Chen Y, Wang Z, Chen X, Liu Y, Zhang H, Sun T (2010) Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare’s milk. J Dairy Sci 93:884–892

    Article  CAS  PubMed  Google Scholar 

  • Cheung HS, Wang FI, Ondetti MA (1983) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biological Chem 225:401–407

    Google Scholar 

  • De Leo F, Panarese S, Gallerani R, Ceci LR (2009) Angiotensin converting enzyme (ACE) inhibitory peptides: production and implementation of functional food. Curr Pharm Des 15:3622–3643

    Article  PubMed  Google Scholar 

  • Degraeve A, Martial G (2003) Purification and partial characterisation of X-prolyl dipeptidyl aminopeptidase of Lactobacillus helveticus ITG LH1 P. Int Dairy J 13:497–507

    Article  CAS  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Lait 87:21–38

    Article  CAS  Google Scholar 

  • El-Agamy EI (2006) Camel milk. In: Park YW, Haenlein GF (eds) Handbook of milk of non-bovine mammals, Ames. Blackwell Publishing Professional, Iowa, pp 297–344

    Chapter  Google Scholar 

  • FitzGerald R, Murray BA (2006) Bioactive peptides and lactic fermentations. Int J Dairy Technol 59:118–125

    Article  CAS  Google Scholar 

  • Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18:163–169

    Article  CAS  PubMed  Google Scholar 

  • Hati S, Sreeja V, Solanki J and Prajapati JB (2015) Significance of proteolytic microorganisms on ACE-inhibitory activity and release of bioactive peptides during fermentation of milk. Indian J Dairy Sci 68:584–591

    Google Scholar 

  • Hati S, Sakure A, Mandal S (2016) Impact of proteolytic Lactobacillus helveticus MTCC5463 on Production of bioactive peptides derived from honey based fermented milk. Int J Pept Res Ther DOI:10.1007/s10989-016-9561-5

    Google Scholar 

  • Hayes M, Ross RP, Fitzgerald GF, Stanton C (2007) Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview. Biotechnol J 2:426–434

    Article  CAS  PubMed  Google Scholar 

  • Hellberg S, Eriksson L, Jonsson J (1991) Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. Int J Pept Protein Res 37(5):414–424

    Article  CAS  PubMed  Google Scholar 

  • Jäkälä P, Vapaatalo H (2010) Antihypertensive peptides from milk proteins. Pharmaceuticals 3:251–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakubczyk A and Baraniak B (2014) Angiotensin I converting enzyme inhibitory peptides obtained after in vitro hydrolysis of Pea (Pisum sativum var. Bajka) Globulins. BioMed Res Int 2014:1–8

    Article  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  • Kumar R, Chaudhary K, Sharma M, Nagpal G, Chauhan JS, Singh S, Gautam A, Raghava GPS (2015) AHTPDB: a comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res 43:956–962

    Article  Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteotytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, ZhangL, Guo M, Wu H, Xie J, Wei D (2014) Virtual screening for angiotensin I-converting enzyme inhibitory peptides from Phascolosoma esculenta. Bioresour Bioprocess 1:1–9

    Article  Google Scholar 

  • López-Expósito R, Recio I (2006) Antibacterial activity of peptides and folding variants from milk proteins. Int Dairy J 16:1294–1305

    Article  Google Scholar 

  • Mehari Y, Mekuriaw Z and Gebru Z (2007) Potentials of camel production in Babilie and Kebribeyah woredas of the Jijiga Zone, Somali Region, Ethiopia. LRRD 19(4):1–10

    Google Scholar 

  • Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, Moosavi-Movahedi AA (2013) The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int Dairy J 29:82–87

    Article  CAS  Google Scholar 

  • Nakamura YM, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 78(4):777–783

    Article  CAS  PubMed  Google Scholar 

  • Padghan PV, Mann B, Sharma R, Bajaj R, Saini P (2016) Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks (Lassi) fermented by Lactobacillus acidophillus with consideration of incubation period and simmering treatment. Int J Pept Res Ther pp: 1–11. DOI:10.1007/s10989-016-9540-x

  • Pan D, Luo Y, Tanokura M (2005) Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chem 91:123–129

    Article  CAS  Google Scholar 

  • Papadimitriou CG, Vafopoulo-Mastrojiannaki A, Viera Silva S, Gomes AM, Malcata FX, Alichanidis E (2007) Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem 15:647–656

    Article  Google Scholar 

  • Park YW (2009) Overview of bioactive components in milk and dairy products. In: Park YW (ed) Bioactive components in milk and dairy products, Ames. Wiley-Blackwell, Iowa, pp 3–5

    Chapter  Google Scholar 

  • Pastar I, Tonic I, Golic N, Kojic M, van Kranenburg R, Kleerebezem M (2003) Identification and genetic characterisation of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Appl Environ Microbiol 69:5802–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pripp HA, Isaksson T, Stepaniak L, Sørhaug T (2004) Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. Eur Food Res Technol 219:579–583

    Article  CAS  Google Scholar 

  • Qian B, Xing M, Cui L, Deng Y, Xu Y, Huang M (2011) Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J Dairy R 78:72–79

    Article  CAS  Google Scholar 

  • Rahman IE, Dirar HA, Osman MA (2009) Microbiological and biochemical changes and sensory evaluation of camel milk fermented by selected bacterial starter cultures. Afr J Food Sci 3:398–405

    Google Scholar 

  • Rodríguez-Figueroa JC, González-Córdova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba B (2012) Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. J Dairy Sci 95:5536–5543

    Article  PubMed  Google Scholar 

  • Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  CAS  PubMed  Google Scholar 

  • Seifu E (2007) Handling, preservation and utilization of camel milk and camel milk products in Shinile and Jijiga Zones, eastern Ethiopia. LRRD 19(6):86

    Google Scholar 

  • Tagliazucchi D, Martini S, Bellesia S, Conte A (2015) Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion. Int J Food Sci Nutr 66(7):774–782

    Article  CAS  PubMed  Google Scholar 

  • Tagliazucchi D, Shamsia S, Conte A (2016) Release of angiotensin converting enzyme-inhibitory peptides during in vitro gastrointestinal digestion of camel milk. Int Dairy J 56:119–128

    Article  CAS  Google Scholar 

  • Vasiljevic T, Jelen P (2002) Lactose hydrolysis in milk as affected by neutralizers used for the preparation of crude β-galactosidase extracts from Lactobacillus bulgaricus 11842. Innov Food Sci Emerg Technol 3:175–184

    Article  CAS  Google Scholar 

  • Vegarud GE, Langsrud T, Svenning C (2000) Mineral-binding milk proteins and peptides; occurrence biochemical and technological characteristics. Br J Nutr 84:91–98

    Article  Google Scholar 

  • Vermeirssen V, Van CJ, Verstraete W (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Brazilian. J Nutr 92:357–366

    Article  CAS  Google Scholar 

  • Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship modelling of peptides containing 4–10 amino acid residues. QSAR Comb Sci 25:873–880

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrota Hati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, D., Hati, S. & Sakure, A. In Silico and In vitro Analysis of Novel Angiotensin I-Converting Enzyme (ACE) inhibitory Bioactive Peptides Derived from Fermented Camel Milk (Camelus dromedarius). Int J Pept Res Ther 23, 441–459 (2017). https://doi.org/10.1007/s10989-017-9577-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9577-5

Keywords

Navigation