Skip to main content

Advertisement

Log in

Some Mechanistic Aspects on Fmoc Solid Phase Peptide Synthesis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Peptides are biomolecules that may have several biological activities which makes them important to the environment in which they operate. Sometimes it is necessary for larger amounts of peptides to carry out some studies, like biological tests, NMR structural research or even interaction studies between peptides with other molecules. Expression can be an alternative for that. However, synthesis is specially useful when unnatural modifications or introduction of site specific tags are required. Synthetic peptides have been used for different studies such as cell signaling, development of epitope-specific antibodies, in cell-biology, biomarkers for diseases etc. Many different methodologies for peptide synthesis can be found in the literature. Solid phase peptide synthesis (SPPS) has been largely used and can be an excellent alternative to achieve larger quantities of these biomolecules. In this mini review, we aim to describe the SPPS and explain some of the mechanistic aspects and reagents involved in all phases of the synthesis: the use of resin, the ninhydrin test, some of the protecting groups, coupling reagents for peptide bond formation and the cleavage process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Akaji K, Kuriyama N, Kimura T, Fujiwara Y, Kiso Y (1992) Anchoring of Fmoc amino scid to 4-alkoxybenzyl alcohol resin using a new esterification reagent. Tetrahed Lett 33:3177–3180

    Article  CAS  Google Scholar 

  • Albericio F (2004) Developments in peptide and amide synthesis. Curr Opin Chem Biol 8:211–221

    Article  CAS  PubMed  Google Scholar 

  • Al-Warhi TI, Al-Hazimi HMA, El-Faham A (2012) Recent development in peptide coupling reagents. J Saudi Chem Soc 16:97–116

    Article  CAS  Google Scholar 

  • Amblard M, Fehrentz JA, Martinez J, Subra G (2005) Fundamentals of modern peptide synthesis. Methods Mol Biol 218:3–24

    Google Scholar 

  • Amblard M, Fehrentz JA, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33:239–253

    Article  CAS  PubMed  Google Scholar 

  • Aucagne V, Valverde IE, Marceau P, Galibert M, Dendane N, Delmas AF (2012) Towards the simplification of protein synthesis: iterative solid-supported ligations with concomitant purifications. Angew Chem Int Ed 51:11320–11324

    Article  CAS  Google Scholar 

  • Barlos K, Gatos D, Kallitsis J, Papaphotiu G, Sotiriu P, Yao W, Schaefer W (1989) Preparation of protected peptide fragments using triphenylmethyl resins. Tetrahedron Lett 30:3943–3946

    Article  CAS  Google Scholar 

  • Benoiton NL (1996) 2-Alkoxy-5(4H)-oxazolones and the enantiomerization of N-alkoxycarbonylamino acids. Biopolymers 40:245–254

    Article  CAS  Google Scholar 

  • Benoiton NL (2005) Chemistry of peptide synthesis. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  • Biemann K, Papayannopoulos IA (1994) Amino acid sequencing of proteins. Acc Chem Res 27:370–378

    Article  CAS  Google Scholar 

  • Blackburn C (2005) Solid-phase synthesis of 2-amino-3-chloro-5- and 8-nitro-1,4-naphthoquinones: a new and general colorimetric test for resin-bound amines. Tetrahed Lett 46:1405–1409

    Article  CAS  Google Scholar 

  • Blankemeyer-Menge B, Nimtz M, Frank R (1990) An efficient method for anchoring Fmoc-amino acids to hydroxyl-functionalised solid supports. Tetrahed Lett 31(12):1701–1704

    Article  CAS  Google Scholar 

  • Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Self-assembling organic nanotubes. Angew Chem Int 16:988–1011

    Article  Google Scholar 

  • Brady SF, Hirschmann R, Veber DF (1977) Some novel acid-labile amine protecting groups. J Org Chem 42:143–146

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev 3:238–250

    CAS  Google Scholar 

  • Carpino L (1987) The 9-fluorenylmethyloxycarbonyl family of base-sensitive amino-protecting groups. Acc Chem Res 20:401–407

    Article  CAS  Google Scholar 

  • Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. an efficient peptide coupling additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  • Carpino LA, Han GY (1972) The 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37:3404–3409

    Article  CAS  Google Scholar 

  • Carpino LA, Shroff H, Triolo SA, Mansour EME, Wenschuh H, Albericio F (1993) The 2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl Group (Pbf) as arginine side chain protectant. Tetrahedr Lett 34:7829–7831

    Article  CAS  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis. PAS, Oxford

    Google Scholar 

  • Chen P (2005) Self-assembly of ionic-complementary peptides: a physicochemical viewpoint. Colloids Surf A 261:3–24

    Article  CAS  Google Scholar 

  • Elsawy MA, Hewage C, Walker B (2012) Racemisation of N-Fmoc phenylglycine under mild microwave-SPPS and conventional stepwise SPPS conditions: attempts to develop strategies for overcoming this. J Pept Sci 18:302–311

    Article  CAS  PubMed  Google Scholar 

  • Fen JB, Man M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (2004) Applications of the ninhydrin reaction for analysis of Amino acids, peptides, and proteins to agricultural and biomedical Sciences. J Agric Food Chem 52:385–406

    Article  CAS  PubMed  Google Scholar 

  • Gisisn BT (1972) The monitoring of reactions in solid-phase peptide synthesis with picric acid. Anal Chim Acta 58:248–249

    Article  Google Scholar 

  • Goldberg JS (2010) Stereochemical basis for a unified structure activity theory of aromatic and heterocyclic rings in selected opioids and opioid peptides. Pers Med Chem 4:1–10

    CAS  Google Scholar 

  • Gońgora-Benítez M, Tulla-Puche J, Albericio F (2013) Handles for Fmoc solid-phase synthesis of protected peptides. ACS Comb Sci 15:217–228

    Article  PubMed  Google Scholar 

  • Gravert DJ, Janda KD (1997) Organic synthesis on soluble polymer supports: liquid-phase methodologies. Chem Rev 97:489–509

    Article  CAS  PubMed  Google Scholar 

  • Hachmann J, Lebl M (2006) Alternative to piperidine in Fmoc solid-phase synthesis. J Comb Chem 8(2): 149–149

    Google Scholar 

  • Han Y, Bontems SL, Hegyes P, Munson MC, Minor CA, Kates SA, Albericio F, Barany G (1996) Preparation and applications of Xanthenylamide (XAL) handles for solid-phase synthesis of c-terminal peptide amides under particularly mild conditions. J Org Chem 61:6326–6339

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–8861

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Nishiuchi Y (2012) 4-Methoxybenzyloxymethyl group, a racemization-resistant protecting group for cysteine in Fmoc solid phase peptide synthesis. Org Lett 14:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Howl J (2005) Peptide synthesis and applications. Humana Press, New York

    Book  Google Scholar 

  • Hudson D (1988) Methodological implications of simultaneous solid-phase peptide synthesis—comparison of different coupling procedures. J Org Chem 53:617–624

    Article  CAS  Google Scholar 

  • Isidro-Llobet A, Alvarez M, Alberico F (2009) Amino acid-protecting groups. Chem Rev 109:2455–2504

    Article  CAS  PubMed  Google Scholar 

  • James IW (1999) Linkers for solid phase organic synthesis. Tetrahedron 55:4855–4946

    Article  CAS  Google Scholar 

  • Jensen KJ (2013) Solid-phase peptide synthesis: an introduction. Methods Mol Biol 1047:1–22

    Article  PubMed  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptide. Anal Biochem 34:595–598

    Article  CAS  PubMed  Google Scholar 

  • Karas M, Hillenkanp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  • Kaupp G, Naimi-Jamal MR, Schmeyers J (2002) Quantitative reaction cascades of ninhydrin in the solid state. Chem Eur J 8(3):594–600

    Article  CAS  PubMed  Google Scholar 

  • Kilk K, Langel Ü (2006) Cellular delivery of peptide nucleic acid by cell-penetrating Peptides. Methods Mol Biol 218:131–142

    Google Scholar 

  • King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pept Prot Res 36:255–266

    Article  CAS  Google Scholar 

  • Lloyd-Williams P, Albericio F, Giralt E (1993) Convergent solid-phase peptide synthesis. Tetrahedron 49:11065

    Article  CAS  Google Scholar 

  • Machado A, Liria CW, Proti PB, Remuzgo C, Miranda MTM (2004) Síntese química e enzimática de peptídeos: princípios básicos e aplicações. Quim Nova 37:781–789

    Article  Google Scholar 

  • March J (1992) Advanced organic chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Marquardt M, Eifler-Lima VL (2001) A síntese orgânica em fase sólida e seus suportes poliméricos mais empregados. Quim Nova 24:846–855

    Article  CAS  Google Scholar 

  • McCaldin DJ (1959) The chemistry of ninhydrin. Chem Rev 1:39–51

    Google Scholar 

  • Menezes MC, Oliveira AK, Melo RL, Ferreira ML, Rioli V, Balan A, Leme AFP, Serrano SMT (2011) Disintegrin-like/cysteine-rich domains of the reprolysin HF3: site-directed mutagenesis reveals essential role of specific residues. Biochimie 93:345–351

    Article  CAS  PubMed  Google Scholar 

  • Mergler M, Dick F (2005) The aspartimide problem in Fmoc-based SPPS. part III. J Peptide Sci 11:650–657

    Article  CAS  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis—the synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Miranda LP, Alewood PF (1999) Accelerated chemical synthesis of peptides and small proteins. Proc Natl Acad Sci 96:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Montalbetti CGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 740:10827–10851

    Article  Google Scholar 

  • Naidoo VB, Rautenbach M (2012) Bidirectional solid phase synthesis of a model oligoglycine bolaamphiphile and purification by rapid self-assembly. J Pept Sci 18:317–325

    Article  CAS  PubMed  Google Scholar 

  • Najera C (2002) From α-Amino acids to peptides: all you need for the journey. Synlett 9:1388–1402

    Article  Google Scholar 

  • Pedersen SL, Jensen KJ (2013) Instruments for automated peptide synthesis. Methods Mol Biol 1047:43–63

    Article  PubMed  Google Scholar 

  • Plaquevent JC, Levillain J, Guillen F, Malhiac C, Gaumont AC (2008) Ionic liquids: new targets and media for alpha-amino acid and peptide chemistry. Chem Rev 108:5035–5060

    Article  CAS  PubMed  Google Scholar 

  • Remuzgo C, Andrade GFS, Temperini MLA, Miranda MTM (2009) Acanthoscurrin fragment 101–132: total synthesis at 60°°C of a novel difficult sequence. Biopolym Pept Sci 92:65–75

    Article  CAS  Google Scholar 

  • Schnolzer M, Alewood P, Jones A, Alewood D, Kent SBH (2007) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Res Ther 13:31–44

    Article  CAS  Google Scholar 

  • Shelton PT, Jensen KJ (2013) Linkers, resins, and general procedures for solid-phase peptide synthesis. Methods Mol Biol 1047:23–42

    Article  PubMed  Google Scholar 

  • Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403

    Article  PubMed  Google Scholar 

  • Tailhades J, Gidel MA, Grossi B, Lécaillon J, Brunel I, Subra G, Martinez J, Amblard M (2010) Synthesis of peptide alcohols on the basis of an O-N acyl-transfer reaction. Angew Chem Int Ed 49:117–120

    Article  CAS  Google Scholar 

  • Takahashi D, Yamamoto T (2012) Development of an efficient liquid-phase peptide synthesis protocol using a novel fluorene-derived anchor support compound with Fmoc chemistry. Tetrahed Lett 53:1936–1939

    Article  CAS  Google Scholar 

  • Tietze AA, Heimer P, Stark A, Imhof D (2012) Ionic liquid applications in peptide chemistry: synthesis, purification and analytical characterization processes. Molecules 17:4158–4185

    Article  CAS  PubMed  Google Scholar 

  • Troll W, Cannan RK (1952) A modified photometric ninhydrin method for the analysis of amino and imino acids. J Biol Chem 1:803–811

    Google Scholar 

  • Wolfenden R (2006) Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem Rev 106:3379–3396

    Article  CAS  PubMed  Google Scholar 

  • Yalcin T, Khouw C, Csizmadia IG, Peterson MR, Harrison AG (1995) Why are B ions stable species in peptide spectra? J Am Soc Mass Spectrom 6:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Zalipsky S, Chang JL, Albericio F, Barany G (1994) Preparation and applications of polyethylene glycol-polystyrene graft resin supports for solid-phase peptide synthesis. React Funct Polym 22:243–258

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Li Y, Miao M, Jiang B (2011) Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem 128:28–33

    Article  CAS  Google Scholar 

  • Zhang Y, Muthana SM, Farnsworth D, Ludek O, Adams K, Barchi JJ Jr, Gildersleeve JC (2012) Enhanced epimerization of glycosylated amino acids during solid-phase peptide synthesis. J Am Chem Soc 134:6316–6325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Andrew William Gerard Murray for the English revision.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance With Ethics

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Jorge do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, D.A.T., Bemquerer, M.P. & do Nascimento, C.J. Some Mechanistic Aspects on Fmoc Solid Phase Peptide Synthesis. Int J Pept Res Ther 20, 53–69 (2014). https://doi.org/10.1007/s10989-013-9366-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-013-9366-8

Keywords

Navigation