Skip to main content

Peptide Release, Side-Chain Deprotection, Work-Up, and Isolation

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

After having successfully synthesized a peptide, it has to be released from the solid support, unless it is being used for on-resin display. The linker and, in some cases, the cleavage mixture determine the C-terminal functionality of the released peptide. In most cases, the peptide is released with concomitant removal of side-chain protecting groups. However, some combinations of linkers and side-chain protecting groups enable a two-stage procedure, either using orthogonal chemistry or graduated labilities. Herein, we describe protocols for the release of peptides from the most commonly used linker types providing a variety of different C-terminal functionalities, including acids, amides, amines, and aldehydes. Moreover, suggestions for determination of peptide purity and for storage conditions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  PubMed  CAS  Google Scholar 

  2. Sheppard RC, Williams BJ (1982) Acid-labile resin linkage agents for use in solid-phase peptide-synthesis. Int J Pept Protein Res 20:451–454

    Article  PubMed  CAS  Google Scholar 

  3. Rink H (1987) Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett 28:3787–3790

    Article  CAS  Google Scholar 

  4. Mergler M, Tanner R, Gosteli J, Grogg P (1988) Peptide synthesis by a combination of solid-phase and solution methods I: a new very acid-labile anchor group for the solid phase synthesis of fully protected fragments. Tetrahedron Lett 29:4005–4008

    Article  CAS  Google Scholar 

  5. Boas U, Brask J, Jensen KJ (2009) Backbone amide linker in solid-phase synthesis. Chem Rev 109:2092–2118

    Article  PubMed  CAS  Google Scholar 

  6. Boas U, Brask J, Christensen JB, Jensen KJ (2002) The ortho backbone amide linker (o-BAL) is an easily prepared and highly acid-labile handle for solid-phase synthesis. J Comb Chem 4:223–228

    Article  PubMed  CAS  Google Scholar 

  7. Barlos K, Gatos D, Kapolos S, Papaphotiu G, Schäfer W, Wenqing Y (1989) Veresterung von partiell geschützten peptid-fragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15-gastrin I. Tetrahedron Lett 30:3947–3950

    Article  CAS  Google Scholar 

  8. Barlos K, Gatos D, Kutsogianni S, Papaphotiou G, Poulos C, Tsegenidis T (1991) Solid-phase synthesis of partially protected and free peptides containing disulfide bonds by simultaneous cysteine oxidation-release from 2-chlorotrityl resin. Int J Pept Protein Res 38:562–568

    Article  PubMed  CAS  Google Scholar 

  9. Eleftheriou S, Gatos D, Panagopoulos A, Stathopoulos S, Barlos K (1999) Attachment of histidine, histamine and urocanic acid to resins of the trityl-type. Tetrahedron Lett 40:2825–2828

    Article  CAS  Google Scholar 

  10. Guillaumie F, Kappel JC, Kelly NM, Barany G, Jensen KJ (2000) Solid-phase synthesis of C-terminal peptide aldehydes from amino acetals anchored to a backbone amide linker (BAL) handle. Tetrahedron Lett 41:6131–6135

    Article  CAS  Google Scholar 

  11. Brask J, Albericio F, Jensen KJ (2003) Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org Lett 5:2951–2953

    Article  PubMed  CAS  Google Scholar 

  12. Sieber P (1987) A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method. Tetrahedron Lett 28:2107–2110

    Article  CAS  Google Scholar 

  13. Mende F, Seitz O (2011) 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Angew Chem Int Ed 50:1232–1240

    Article  CAS  Google Scholar 

  14. Guillier F, Orain D, Bradley M (2000) Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 100:2091–2158

    Article  PubMed  CAS  Google Scholar 

  15. Semenov AN, Gordeev KY (1995) A novel oxidation-labile linker for solid-phase peptide synthesis. Int J Pept Protein Res 45:303–304

    Article  PubMed  CAS  Google Scholar 

  16. Millington CR, Quarrell R, Lowe G (1998) Aryl hydrazides as linkers for solid phase synthesis which are cleavable under mild oxidative conditions. Tetrahedron Lett 39:7201–7204

    Article  CAS  Google Scholar 

  17. Atherton E, Gait MJ, Sheppard RC, Williams BJ (1979) The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorg Chem 8:351–370

    Article  CAS  Google Scholar 

  18. Story SC, Aldrich JV (1992) Preparation of protected peptide amides using the Fmoc protocol—comparison of resins for solid-phase synthesis. Int J Pept Protein Res 39:87–92

    Article  PubMed  CAS  Google Scholar 

  19. Jullian M, Hernandez A, Maurras A, Puget K, Amblard M, Martinez J, Subra G (2009) N-terminus FITC labeling of peptides on solid support: the truth behind the spacer. Tetrahedron Lett 50:260–263

    Article  CAS  Google Scholar 

  20. Abd-Elgaliel WR, Gallazzi F, Lever SZ (2007) Total solid-phase synthesis of bombesin analogs with different functional groups at the C-terminus. J Pept Sci 13:487–492

    Article  PubMed  CAS  Google Scholar 

  21. Minkwitz R, Meldal M (2005) Application of a photolabile backbone amide linker for cleavage of internal amides in the synthesis towards melanocortin subtype-4 agonists. QSAR Comb Sci 24:343–353

    Article  CAS  Google Scholar 

  22. Hutchins SM, Chapman KT (1996) Fischer indole synthesis on a solid support. Tetrahedron Lett 37:4869–4872

    Article  CAS  Google Scholar 

  23. Brunsveld L, Kuhlmann J, Waldmann H (2006) Synthesis of palmitoylated Ras-peptides and -proteins. Methods 40:151–165

    Article  PubMed  CAS  Google Scholar 

  24. Beck W, Jung G (1994) Convenient reduction of S-oxides in synthetic peptides, lipopeptides and peptide libraries. Lett Pept Sci 1:31–37

    Article  CAS  Google Scholar 

  25. Malik L, Tofteng AP, Pedersen SL, Sørensen KK, Jensen KJ (2010) Automated ‘X-Y’ robot for peptide synthesis with microwave heating: application to difficult peptide sequences and protein domains. J Pept Sci 16:506–512

    PubMed  CAS  Google Scholar 

  26. Teixeira A, Benckhuijsen WE, de Koning PE, Valentijn ARPM, Drijfhout JW (2002) The use of DODT as a non-malodorous scavenger in fmoc-based peptide synthesis. Protein Pept Lett 9:379–385

    Article  PubMed  CAS  Google Scholar 

  27. Guy CA, Fields GB (1997) Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. In: Solid-phase peptide synthesis, San Diego, 289, Elsevier Academic, pp 67–83

    Google Scholar 

  28. Banerjee J, Hanson AJ, Muhonen WW, Shabb JB, Mallik S (2010) Microwave-assisted synthesis of triple-helical, collagen-mimetic lipopeptides. Nat Protoc 5:39–50

    Article  PubMed  CAS  Google Scholar 

  29. Harris P, Williams G, Shepherd P, Brimble M (2008) The synthesis of phosphopeptides using microwave-assisted solid phase peptide synthesis. Int J Pept Res Ther 14:387–392

    Article  CAS  Google Scholar 

  30. Brandt M, Gammeltoft S, Jensen K (2006) Microwave heating for solid-phase peptide synthesis: general evaluation and application to 15-mer phosphopeptides. Int J Pept Res Ther 12:349–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Pedersen, S.L., Jensen, K.J. (2013). Peptide Release, Side-Chain Deprotection, Work-Up, and Isolation. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics