Skip to main content

Advertisement

Log in

Role of A β and the α 7 nicotinic acetylcholine receptor in regulating synaptic plasticity in Alzheimer's disease

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is caused by the accumulation of β-amyloid protein (Aβ) in the brain. The aggregation of β-amyloid protein to higher molecular weight fibrillar forms is also considered to be an important step in the pathogenesis of the disease. The memory problems associated with AD are likely to be caused by changes in synaptic plasticity. Recent studies suggest that Aβ binds to the α 7 nicotinic acetylcholine receptor (α 7 nAChR), which plays an important role in synaptic plasticity and memory. A loop domain localized towards the C-terminus of the extracellular region of the receptor has been identified as forming part of a putative Aβ-binding site. In cell culture experiments, the binding of Aβ to the α 7 nAChR has been found to cause an increase in the level of acetylcholinesterase, which is also increased around amyloid plaques in the AD brain. These studies indicate that the Aβ-binding site on the α 7 nAChR receptor is an important new target for therapeutic development in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butters, N., Delis, D.C. and Lucas, J.A., Annu. Rev. Psychol., 46 (1995) 493.

    Article  CAS  PubMed  Google Scholar 

  2. Probst, A., Langui, D. and Ulrich, J., Brain Pathol., 1 (1991) 229.

    CAS  PubMed  Google Scholar 

  3. Small, D.H. and McLean, C.A., J. Neurochem., 73 (1999) 443.

    Article  CAS  PubMed  Google Scholar 

  4. Aguzzi, A. and Haass, C., Science, 302 (2003) 814.

    Article  CAS  PubMed  Google Scholar 

  5. Jarrett, J.T. and Lansbury, P.T. Jr., Cell, 73 (1993) 1055.

    Article  CAS  PubMed  Google Scholar 

  6. Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L. and Neve, R.L., Science, 245 (1989) 417.

    CAS  PubMed  Google Scholar 

  7. Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F. and Angeretti, N., Neuroreport, 4 (1993) 523.

    CAS  PubMed  Google Scholar 

  8. Terry, R.D., J. Neuropathol. Exp. Neurol., 59 (2000) 1118.

    CAS  PubMed  Google Scholar 

  9. Small, D.H., Mok, S.S. and Bornstein, J.C., Nat. Rev. Neurosci., 2 (2001) 595.

    Article  CAS  PubMed  Google Scholar 

  10. Broide, R.S. and Leslie, F.M., Mol. Neurobiol., 20 (1999) 1.

    CAS  PubMed  Google Scholar 

  11. Sargent, P.B., Annu. Rev. Neurosci., 16 (1993) 403.

    Article  CAS  PubMed  Google Scholar 

  12. Broide, R.S., Robertson, R.T. and Leslie, F.M., J. Neurosci., 16 (1996) 2956.

    CAS  PubMed  Google Scholar 

  13. Cheung, N.S., Small, D.H. and Livett, B.G., J. Neurochem., 60 (1993) 1163.

    CAS  PubMed  Google Scholar 

  14. Wang, H.Y., Lee, D.H., D'Andrea, M.R., Peterson, P.A., Shank, R.P. and Reitz, A.B., J. Biol. Chem., 275 (2000) 5626.

    CAS  PubMed  Google Scholar 

  15. Pettit, D.L., Shao, Z. and Yakel, J.L., J. Neurosci., 21 (2001) RC120.

    CAS  PubMed  Google Scholar 

  16. Tozaki, H., Matsumoto, A., Kanno, T., Nagai, K., Nagata, T., Yamamoto, S. and Nishizaki, T., Biochem. Biophys. Res. Commun., 294 (2002) 42.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Q., Kawai, H. and Berg, D.K., Proc. Natl. Acad. Sci. USA, 98 (2001) 4734.

    CAS  PubMed  Google Scholar 

  18. Dineley, K.T., Westerman, M., Bui, D., Bell, K., Ashe, K.H. and Sweatt, J.D., J. Neurosci., 21 (2001) 4125.

    CAS  PubMed  Google Scholar 

  19. Dineley, K.T., Bell, K.A., Bui, D. and Sweatt, J.D., J. Biol. Chem., 277 (2002) 25056.

    CAS  PubMed  Google Scholar 

  20. Wang, H.Y., Li, W., Benedetti, N.J. and Lee, D.H., J. Biol. Chem., 278 (2003) 31547.

    CAS  PubMed  Google Scholar 

  21. Sberna, G., Saez-Valero, J., Beyreuther, K., Masters, C.L. and Small, D.H., J. Neurochem., 69 (1997) 1177.

    CAS  PubMed  Google Scholar 

  22. Fodero, L.R., Mok, S.S., Losic, D., Martin, L.L., Aguilar, M.I., Barrow, C.J., Livett, B.G. and Small, D.H., J. Neurochem., 88 (2004) 1186.

    Article  CAS  PubMed  Google Scholar 

  23. Saez-Valero, J., Sberna, G., McLean, C.A. and Small, D.H., J. Neurochem., 72 (1999) 1600.

    Article  CAS  PubMed  Google Scholar 

  24. Small, D.H., Fodero, L.R. and Saez-Valero, J., In Inestrosa, N.C.(Ed.), VIIth International Conference on Cholinesterases, Pucon, Chile, November, 2003.

  25. Small, D.H., Curr. Alz. Res., 1 (2004) 27.

    CAS  Google Scholar 

  26. Vien, J., Duke, R.K., Mewett, K.N., Johnston, G.A.R., Shingai, R. and Chebib, M., Br. J. Pharmacol., 135 (2002) 883.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, D.H., Fodero, L.R., Losic, D. et al. Role of A β and the α 7 nicotinic acetylcholine receptor in regulating synaptic plasticity in Alzheimer's disease. Int J Pept Res Ther 10, 401–404 (2003). https://doi.org/10.1007/s10989-004-2390-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-2390-y

Navigation