Skip to main content

α7-Nicotinic Acetylcholine Receptors: New Therapeutic Avenues in Alzheimer’s Disease

  • Protocol
  • First Online:
Nicotinic Acetylcholine Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 117))

Abstract

Amyloid plaques, derived from aggregates of amyloid β (Aβ), are closely linked to the pathogenesis of Alzheimer’s disease (AD). Another neuropathological hallmark is the loss of cholinergic markers, associated with a reduction in the α7 subunit of the nicotinic acetylcholine receptor (nAChR) in the brains of AD patients. The α7-nAChR plays an important role in circuits involved in learning and memory, and may be a promising target for the treatment of AD. Numerous studies indicate that binding to α7-nAChRs is neuroprotective. However, Aβ has also been shown to induce tau phosphorylation via α7-nAChR activation. In addition, picomolar to nanomolar concentrations of Aβ stimulate presynaptic α7-nAChRs, evoking an increase in presynaptic Ca2+ levels. There is evidence that Aβ influences hippocampus-dependent cognitive functions and synaptic plasticity such as long-term potentiation by modulating the function of α7-nAChRs. In line with the roles of α7-nAChRs in AD pathogenesis, allosteric modulators of α7-nAChRs have been proposed as novel therapeutical agents in the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

APP:

Aβ precursor protein

APPswe:

Swedish APP 670/671 mutation

Aβ:

Amyloid-β

ChAT:

Choline acetyltransferase

ERK/MAPK:

Extracellular-signal-regulated kinase mitogen-activated protein kinase

GSK3beta:

Glycogen synthase kinase3β

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

LDH:

Lactate dehydrogenase

LTD:

Long term depression

LTP:

Long term potentiation

MCI:

Mild cognitive impairment

MLA:

Methyllycaconitine

nAChR:

Nicotinic acetylcholine receptor

NMDA:

N-methyl-d-aspartate

siRNA:

Small interfering RNA

References

  1. Alzheimer’s A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11:332–384

    Article  Google Scholar 

  2. Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76(Pt A):27–50

    Article  CAS  PubMed  Google Scholar 

  3. Lorke DE, Petroianu G, Oz M. (2016) α7-nicotinic acetylcholine receptors and β-amyloid peptides in Alzheimer’s disease. In: Li M (ed), Neuromethods Vol. 117, chapter 10. Nicotinic Acetylcholine Receptor Technologies. New York: springer science + business media

    Google Scholar 

  4. Puzzo D, Gulisano W, Arancio O et al (2015) The keystone of Alzheimer pathogenesis might be sought in Abeta physiology. Neuroscience 307:26–36

    Article  CAS  PubMed  Google Scholar 

  5. Qiu T, Liu Q, Chen YX et al (2015) Abeta42 and Abeta40: similarities and differences. J Pept Sci 21:522–529

    Google Scholar 

  6. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  Google Scholar 

  7. Madeira JM, Schindler SM, Klegeris A (2015) A new look at auranofin, dextromethorphan and rosiglitazone for reduction of gliamediated inflammation in neurodegenerative diseases. Neural Regen Res 10:391–393

    Google Scholar 

  8. Zotova E, Nicoll JA, Kalaria R et al (2010) Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Contestabile A (2011) The history of the cholinergic hypothesis. Behav Brain Res 221:334–340

    Article  CAS  PubMed  Google Scholar 

  10. Mesulam MM (2013) Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 521:4124–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buccafusco JJ, Beach JW, Terry AV Jr (2009) Desensitization of nicotinic acetylcholine receptors as a strategy for drug development. J Pharmacol Exp Ther 328:364–370

    Article  CAS  PubMed  Google Scholar 

  12. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  CAS  PubMed  Google Scholar 

  13. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Molas S, Dierssen M (2014) The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 46(Pt 2):315–325

    Article  CAS  PubMed  Google Scholar 

  15. Jiang S, Li Y, Zhang C et al (2014) M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci Bull 30:295–307

    Article  CAS  PubMed  Google Scholar 

  16. Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  PubMed  Google Scholar 

  18. Millar NS (2009) A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem Pharmacol 78:766–776

    Article  CAS  PubMed  Google Scholar 

  19. Sigel E, Minier F (2005) The Xenopus oocyte: system for the study of functional expression and modulation of proteins. Mol Nutr Food Res 49:228–234

    Article  CAS  PubMed  Google Scholar 

  20. Buckingham SD, Pym L, Sattelle DB (2006) Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides. Methods Mol Biol 322:331–345

    Article  CAS  PubMed  Google Scholar 

  21. Bossi E, Fabbrini MS, Ceriotti A (2007) Exogenous protein expression in Xenopus oocytes: basic procedures. Methods Mol Biol 375:107–131

    CAS  PubMed  Google Scholar 

  22. Singhal SK, Zhang L, Morales M et al (2007) Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors. Neuropharmacology 52:387–394

    Article  CAS  PubMed  Google Scholar 

  23. Akaike A, Takada-Takatori Y, Kume T et al (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216

    Article  CAS  PubMed  Google Scholar 

  24. Echeverria V, Zeitlin R (2012) Cotinine: a potential new therapeutic agent against Alzheimer’s disease. CNS Neurosci Ther 18:517–523

    Article  CAS  PubMed  Google Scholar 

  25. Hernandez CM, Dineley KT (2012) Alpha7 nicotinic acetylcholine receptors in Alzheimer’s disease: neuroprotective, neurotrophic or both? Curr Drug Targets 13:613–622

    Article  CAS  PubMed  Google Scholar 

  26. Kihara T, Shimohama S, Sawada H et al (2001) Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276:13541–13546

    CAS  PubMed  Google Scholar 

  27. Huang X, Cheng Z, Su Q et al (2012) Neuroprotection by nicotine against colchicine-induced apoptosis is mediated by PI3-kinase—Akt pathways. Int J Neurosci 122:324–332

    Article  CAS  PubMed  Google Scholar 

  28. Yu W, Mechawar N, Krantic S et al (2011) Alpha7 Nicotinic receptor activation reduces beta-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signaling. J Neurochem 119:848–858

    Article  CAS  PubMed  Google Scholar 

  29. Martin SE, De Fiebre NE, De Fiebre CM (2004) The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures. Brain Res 1022:254–256

    Article  CAS  PubMed  Google Scholar 

  30. Jonnala RR, Buccafusco JJ (2001) Relationship between the increased cell surface alpha7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J Neurosci Res 66:565–572

    Article  CAS  PubMed  Google Scholar 

  31. Deng J, Shen C, Wang YJ et al (2010) Nicotine exacerbates tau phosphorylation and cognitive impairment induced by amyloid-beta 25-35 in rats. Eur J Pharmacol 637:83–88

    Article  CAS  PubMed  Google Scholar 

  32. Oddo S, Caccamo A, Green KN et al (2005) Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102:3046–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  CAS  PubMed  Google Scholar 

  34. Takada Y, Yonezawa A, Kume T et al (2003) Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306:772–777

    Article  CAS  PubMed  Google Scholar 

  35. Takada-Takatori Y, Kume T, Sugimoto M et al (2006) Neuroprotective effects of galanthamine and tacrine against glutamate neurotoxicity. Eur J Pharmacol 549:19–26

    Article  CAS  PubMed  Google Scholar 

  36. Sberna G, Saez-Valero J, Beyreuther K et al (1997) The amyloid beta-protein of Alzheimer’s disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem 69:1177–1184

    Article  CAS  PubMed  Google Scholar 

  37. Fodero LR, Mok SS, Losic D et al (2004) Alpha7-nicotinic acetylcholine receptors mediate an Abeta(1-42)-induced increase in the level of acetylcholinesterase in primary cortical neurones. J Neurochem 88:1186–1193

    Article  CAS  PubMed  Google Scholar 

  38. Qi XL, Nordberg A, Xiu J et al (2007) The consequences of reducing expression of the alpha7 nicotinic receptor by RNA interference and of stimulating its activity with an alpha7 agonist in SH-SY5Y cells indicate that this receptor plays a neuroprotective role in connection with the pathogenesis of Alzheimer’s disease. Neurochem Int 51:377–383

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez CM, Kayed R, Zheng H et al (2010) Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci 30:2442–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu WH, Cuervo AM, Kumar A et al (2005) Macroautophagy—a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hung SY, Huang WP, Liou HC et al (2015) LC3 overexpression reduces Abeta neurotoxicity through increasing alpha7nAchR expression and autophagic activity in neurons and mice. Neuropharmacology 93:243–251

    Article  CAS  PubMed  Google Scholar 

  42. Bitner RS, Nikkel AL, Markosyan S et al (2009) Selective alpha7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3beta and decreases tau phosphorylation in vivo. Brain Res 1265:65–74

    Article  CAS  PubMed  Google Scholar 

  43. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    Article  CAS  PubMed  Google Scholar 

  44. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dougherty JJ, Wu J, Nichols RA (2003) Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci 23:6740–6747

    CAS  PubMed  Google Scholar 

  46. Mehta TK, Dougherty JJ, Wu J et al (2009) Defining pre-synaptic nicotinic receptors regulated by beta amyloid in mouse cortex and hippocampus with receptor null mutants. J Neurochem 109:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan GM, Tong M, Jhun M et al (2010) beta-Amyloid activates presynaptic alpha7 nicotinic acetylcholine receptors reconstituted into a model nerve cell system: involvement of lipid rafts. Eur J Neurosci 31:788–796

    Article  PubMed  Google Scholar 

  48. Wu J, Khan GM, Nichols RA (2007) Dopamine release in prefrontal cortex in response to beta-amyloid activation of alpha7 * nicotinic receptors. Brain Res 1182:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puzzo D, Privitera L, Leznik E et al (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mcgehee DS, Heath MJ, Gelber S et al (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  CAS  PubMed  Google Scholar 

  51. Nayak SV, Dougherty JJ, Mcintosh JM et al (2001) Ca(2+) changes induced by different presynaptic nicotinic receptors in separate populations of individual striatal nerve terminals. J Neurochem 76:1860–1870

    Article  CAS  PubMed  Google Scholar 

  52. Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939

    Article  CAS  PubMed  Google Scholar 

  53. Ondrejcak T, Wang Q, Kew JN et al (2012) Activation of alpha7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Ass-mediated inhibition of LTP in the rat hippocampus. Eur J Pharmacol 677:63–70

    Article  CAS  PubMed  Google Scholar 

  54. Klyubin I, Walsh DM, Lemere CA et al (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11:556–561

    Article  CAS  PubMed  Google Scholar 

  55. Li SF, Wu MN, Wang XH et al (2011) Requirement of alpha7 nicotinic acetylcholine receptors for amyloid beta protein-induced depression of hippocampal long-term potentiation in CA1 region of rats in vivo. Synapse 65:1136–1143

    Article  CAS  PubMed  Google Scholar 

  56. Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu Q, Xie X, Lukas RJ et al (2013) A novel nicotinic mechanism underlies beta-amyloid-induced neuronal hyperexcitation. J Neurosci 33:7253–7263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Xie X, Emadi S et al (2015) A novel nicotinic mechanism underlies beta-amyloid induced neurotoxicity. Neuropharmacology 97:457–463

    Google Scholar 

  59. Liu Q, Kawai H, Berg DK (2001) beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A 98:4734–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pettit DL, Shao Z, Yakel JL (2001) Beta-amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 21:RC120

    CAS  PubMed  Google Scholar 

  61. Lee DH, Wang HY (2003) Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid1-40 and beta-amyloid1-42. J Neurobiol 55:25–30

    Article  CAS  PubMed  Google Scholar 

  62. Wang HY, Stucky A, Liu J et al (2009) Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimer’s disease brain. J Neurosci 29:10961–10973

    Article  CAS  PubMed  Google Scholar 

  63. Adams JP, Sweatt JD (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 42:135–163

    Article  CAS  PubMed  Google Scholar 

  64. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  CAS  PubMed  Google Scholar 

  65. Dineley KT, Westerman M, Bui D et al (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21:4125–4133

    CAS  PubMed  Google Scholar 

  66. Young KF, Pasternak SH, Rylett RJ (2009) Oligomeric aggregates of amyloid beta peptide 1-42 activate ERK/MAPK in SH-SY5Y cells via the alpha7 nicotinic receptor. Neurochem Int 55:796–801

    Article  CAS  PubMed  Google Scholar 

  67. Abbott JJ, Howlett DR, Francis PT et al (2008) Abeta(1-42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiol Aging 29:992–1001

    Article  CAS  PubMed  Google Scholar 

  68. Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    Article  CAS  PubMed  Google Scholar 

  69. Mura E, Zappettini S, Preda S et al (2012) Dual effect of beta-amyloid on alpha7 and alpha4beta2 nicotinic receptors controlling the release of glutamate, aspartate and GABA in rat hippocampus. PLoS One 7:e29661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang HY, Li W, Benedetti NJ et al (2003) Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278:31547–31553

    Article  CAS  PubMed  Google Scholar 

  71. Hellstrom-Lindahl E, Moore H, Nordberg A (2000) Increased levels of tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 74:777–784

    Article  CAS  PubMed  Google Scholar 

  72. Wang HY, Bakshi K, Frankfurt M et al (2012) Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J Neurosci 32:9773–9784

    Article  CAS  PubMed  Google Scholar 

  73. Hellstrom-Lindahl E (2000) Modulation of beta-amyloid precursor protein processing and tau phosphorylation by acetylcholine receptors. Eur J Pharmacol 393:255–263

    Article  CAS  PubMed  Google Scholar 

  74. Ulrich J, Johannson-Locher G, Seiler WO et al (1997) Does smoking protect from Alzheimer’s disease? Alzheimer-type changes in 301 unselected brains from patients with known smoking history. Acta Neuropathol 94:450–454

    Article  CAS  PubMed  Google Scholar 

  75. Grayson L, Thomas AJ (2012) Smoking, nicotine and dementia. Maturitas 72:4–5

    Article  PubMed  Google Scholar 

  76. Busciglio J, Lorenzo A, Yeh J et al (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888

    Article  CAS  PubMed  Google Scholar 

  77. Small DH (2008) Network dysfunction in Alzheimer’s disease: does synaptic scaling drive disease progression? Trends Mol Med 14:103–108

    Article  CAS  PubMed  Google Scholar 

  78. Terry RD (2000) Cell death or synaptic loss in Alzheimer disease. J Neuropathol Exp Neurol 59:1118–1119

    Article  CAS  PubMed  Google Scholar 

  79. Lorke DE, Wai MS, Liang Y et al (2010) TUNEL and growth factor expression in the prefrontal cortex of Alzheimer patients over 80 years old. Int J Immunopathol Pharmacol 23:13–23

    CAS  PubMed  Google Scholar 

  80. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  CAS  PubMed  Google Scholar 

  81. Palop JJ, Chin J, Roberson ED et al (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55:697–711

    Article  CAS  PubMed  Google Scholar 

  82. Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Small DH (2004) Do acetylcholinesterase inhibitors boost synaptic scaling in Alzheimer’s disease? Trends Neurosci 27:245–249

    Article  CAS  PubMed  Google Scholar 

  84. Dekosky ST, Ikonomovic MD, Styren SD et al (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155

    Article  CAS  PubMed  Google Scholar 

  85. Dineley KT, Xia X, Bui D et al (2002) Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem 277:22768–22780

    Article  CAS  PubMed  Google Scholar 

  86. Fodero LR, Saez-Valero J, Mclean CA et al (2002) Altered glycosylation of acetylcholinesterase in APP (SW) Tg2576 transgenic mice occurs prior to amyloid plaque deposition. J Neurochem 81:441–448

    Article  CAS  PubMed  Google Scholar 

  87. Dineley KT, Hogan D, Zhang WR et al (2007) Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 88:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dziewczapolski G, Glogowski CM, Masliah E et al (2009) Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 29:8805–8815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taglialatela G, Hogan D, Zhang WR et al (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci U S A 91:12243–12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Loo DT, Copani A, Pike CJ et al (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90:7951–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184

    Article  CAS  PubMed  Google Scholar 

  93. Darocha-Souto B, Scotton TC, Coma M et al (2011) Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J Neuropathol Exp Neurol 70:360–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cleary JP, Walsh DM, Hofmeister JJ et al (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  CAS  PubMed  Google Scholar 

  95. Lee EB, Leng LZ, Zhang B et al (2006) Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 281:4292–4299

    Article  CAS  PubMed  Google Scholar 

  96. Gong Y, Chang L, Viola KL et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 100:10417–10422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li S, Shankar GM, Selkoe DJ (2010) How do soluble oligomers of amyloid beta-protein impair hippocampal synaptic plasticity? Front Cell Neurosci 4:5

    PubMed  PubMed Central  Google Scholar 

  98. Lilja AM, Porras O, Storelli E et al (2011) Functional interactions of fibrillar and oligomeric amyloid-beta with alpha7 nicotinic receptors in Alzheimer’s disease. J Alzheimers Dis 23:335–347

    CAS  PubMed  Google Scholar 

  99. Parri HR, Hernandez CM, Dineley KT (2011) Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82:931–942

    Article  CAS  PubMed  Google Scholar 

  100. Chen L, Yamada K, Nabeshima T et al (2006) Alpha7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology 50:254–268

    Article  CAS  PubMed  Google Scholar 

  101. Puzzo D, Privitera L, Fa M et al (2011) Endogenous amyloid-beta is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69:819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buckingham SD, Jones AK, Brown LA et al (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61:39–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferchmin PA, Perez D, Eterovic VA et al (2003) Nicotinic receptors differentially regulate N-methyl-D-aspartate damage in acute hippocampal slices. J Pharmacol Exp Ther 305:1071–1078

    Article  CAS  PubMed  Google Scholar 

  104. Fujii S, Ji Z, Sumikawa K (2000) Inactivation of alpha7 ACh receptors and activation of non-alpha7 ACh receptors both contribute to long term potentiation induction in the hippocampal CA1 region. Neurosci Lett 286:134–138

    Article  CAS  PubMed  Google Scholar 

  105. Hu M, Schurdak ME, Puttfarcken PS et al (2007) High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands. Brain Res 1151:227–235

    Article  CAS  PubMed  Google Scholar 

  106. Mousavi M, Hellstrom-Lindahl E (2009) Nicotinic receptor agonists and antagonists increase sAPPalpha secretion and decrease Abeta levels in vitro. Neurochem Int 54:237–244

    Article  CAS  PubMed  Google Scholar 

  107. Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53:457–478

    Article  CAS  PubMed  Google Scholar 

  108. Picciotto MR, Addy NA, Mineur YS et al (2008) It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84:329–342

    Article  CAS  PubMed  Google Scholar 

  109. Anderson SM, Brunzell DH (2012) Low dose nicotine and antagonism of beta2 subunit containing nicotinic acetylcholine receptors have similar effects on affective behavior in mice. PLoS One 7, e48665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Levin ED, Briggs SJ, Christopher NC et al (1993) Chronic nicotinic stimulation and blockade effects on working memory. Behav Pharmacol 4:179–182

    Article  CAS  PubMed  Google Scholar 

  111. Levin ED, Caldwell DP (2006) Low-dose mecamylamine improves learning of rats in the radial-arm maze repeated acquisition procedure. Neurobiol Learn Mem 86:117–122

    Article  CAS  PubMed  Google Scholar 

  112. Hahn B, Shoaib M, Stolerman IP (2011) Selective nicotinic receptor antagonists: effects on attention and nicotine-induced attentional enhancement. Psychopharmacology (Berl) 217:75–82

    Article  CAS  Google Scholar 

  113. Ferchmin PA, Perez D, Castro Alvarez W et al (2013) Gamma-aminobutyric acid type A receptor inhibition triggers a nicotinic neuroprotective mechanism. J Neurosci Res 91:416–425

    Article  CAS  PubMed  Google Scholar 

  114. Roychaudhuri R, Yang M, Hoshi MM et al (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    Article  CAS  PubMed  Google Scholar 

  115. Wang HY, Bakshi K, Shen C et al (2010) S 24795 limits beta-amyloid-alpha7 nicotinic receptor interaction and reduces Alzheimer’s disease-like pathologies. Biol Psychiatry 67:522–530

    Article  CAS  PubMed  Google Scholar 

  116. Oz M, Lorke DE, Petroianu GA (2009) Methylene blue and Alzheimer’s disease. Biochem Pharmacol 78:927–932

    Article  CAS  PubMed  Google Scholar 

  117. Mozayan M, Chen MF, Si M et al (2006) Cholinesterase inhibitor blockade and its prevention by statins of sympathetic alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. J Cereb Blood Flow Metab 26:1562–1576

    Article  CAS  PubMed  Google Scholar 

  118. Mozayan M, Lee TJ (2007) Statins prevent cholinesterase inhibitor blockade of sympathetic alpha7-nAChR-mediated currents in rat superior cervical ganglion neurons. Am J Physiol Heart Circ Physiol 293:H1737–H1744

    Article  CAS  PubMed  Google Scholar 

  119. Al Mansouri AS, Lorke DE, Nurulain SM et al (2012) Methylene blue inhibits the function of alpha7-nicotinic acetylcholine receptors. CNS Neurol Disord Drug Targets Apr 4 [Epub ahead of print]

    Google Scholar 

  120. Pereira EF, Reinhardt-Maelicke S, Schrattenholz A et al (1993) Identification and functional characterization of a new agonist site on nicotinic acetylcholine receptors of cultured hippocampal neurons. J Pharmacol Exp Ther 265:1474–1491

    CAS  PubMed  Google Scholar 

  121. Samochocki M, Hoffle A, Fehrenbacher A et al (2003) Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 305:1024–1036

    Article  CAS  PubMed  Google Scholar 

  122. Aracava Y, Pereira EF, Maelicke A et al (2005) Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther 312:1195–1205

    Article  CAS  PubMed  Google Scholar 

  123. Maskell PD, Speder P, Newberry NR et al (2003) Inhibition of human alpha 7 nicotinic acetylcholine receptors by open channel blockers of N-methyl-D-aspartate receptors. Br J Pharmacol 140:1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oliver D, Ludwig J, Reisinger E et al (2001) Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells. Mol Pharmacol 60:183–189

    CAS  PubMed  Google Scholar 

  125. Plazas PV, Savino J, Kracun S et al (2007) Inhibition of the alpha9alpha10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-D-aspartate receptors. Eur J Pharmacol 566:11–19

    Article  CAS  PubMed  Google Scholar 

  126. Buisson B, Bertrand D (1998) Open-channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:555–563

    CAS  PubMed  Google Scholar 

  127. Smulders CJ, Zwart R, Bermudez I et al (2005) Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur J Pharmacol 509:97–108

    Article  CAS  PubMed  Google Scholar 

  128. Csernansky JG, Martin M, Shah R et al (2005) Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsychopharmacology 30:2135–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moriguchi S, Zhao X, Marszalec W et al (2005) Modulation of N-methyl-D-aspartate receptors by donepezil in rat cortical neurons. J Pharmacol Exp Ther 315:125–135

    Article  CAS  PubMed  Google Scholar 

  130. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  131. Bertrand D, Gopalakrishnan M (2007) Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 74:1155–1163

    Article  CAS  PubMed  Google Scholar 

  132. Williams DK, Wang J, Papke RL (2011) Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 82:915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge Derek Boyd for his skillful assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Oz M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Oz, M., Petroianu, G., Lorke, D.E. (2016). α7-Nicotinic Acetylcholine Receptors: New Therapeutic Avenues in Alzheimer’s Disease. In: Li, M. (eds) Nicotinic Acetylcholine Receptor Technologies. Neuromethods, vol 117. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3768-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3768-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3766-0

  • Online ISBN: 978-1-4939-3768-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics