Skip to main content
Log in

Asymptotic and structural properties of special cases of the Wright function arising in probability theory

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

This paper presents previously unknown properties of some special cases of the Wright function whose consideration is necessitated by our work on probability theory. We establish new asymptotic properties of this function under numerous assumptions on the ordering of the parameter and variable. Several representations involving well-known special functions are given. We also provide some integral representations and structural properties involving the “reduced” Wright function. Some of the properties established imply a reflection principle that connects the “reduced” Wright functions with the opposite values of the parameter and certain Bessel functions. Several asymptotic relations for both particular cases of this function are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Borovkov and K.A. Borovkov, Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions, Cambridge University Press, Cambridge, 2008.

    Book  MATH  Google Scholar 

  2. B.L.J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes integrals, Compos. Math., 15:239–341, 1963.

    MathSciNet  MATH  Google Scholar 

  3. J. Burridge, A. Kuznetsov, M. Kwasnicki, and A.E. Kyprianou, New families of subordinators with explicit transition probability semigroup, Stochastic Processes Appl., 124:3480–3495, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Hougaard, M.-L.T. Lee, and G.A. Whitmore, Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics, 53:1225–1238, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  6. N.L. Johnson, S. Kotz, and A.W. Kemp, Univariate Discrete Distributions, 3rd ed., Wiley, Hoboken, NJ, 2005.

    Book  MATH  Google Scholar 

  7. B. Jørgensen, The Theory of Dispersion Models, Chapman & Hall, London, 1997.

    MATH  Google Scholar 

  8. L.V. Kim and A.V. Nagaev, On the asymmetrical problem of large deviations, Theory Probab. Appl., 20:57–68, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.C. Kokonendji, S. Dossou-Gbété, and C.G.B. Demétrio, Some discrete exponential dispersion models: Poisson–Tweedie and Hinde–Demétrio classes, SORT, 28:201–214, 2004.

    MathSciNet  MATH  Google Scholar 

  10. J. Mikusiński, On the function whose Laplace-transform is \( {\mathrm{e}}^{-{z}^{\alpha }} \), Stud. Math., 18:191–198, 1959.

    MathSciNet  MATH  Google Scholar 

  11. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.

    MATH  Google Scholar 

  12. Yu.M. Orban and Yu.P. Studnev, Functions of Airy and Fresnel type as limiting laws for convolutions of functions of bounded variation, Ukr. Math. J., 25:255–262, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.H. Panjer and G.E. Willmot, Insurance Risk Models, Society of Actuaries, Schaumberg, IL, 1992.

    Google Scholar 

  14. R.B. Paris, Exponentially small expansions of the Wright function on the Stokes lines, Lith. Math. J., 54(1):82–105, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes Integrals, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  16. R.B. Paris and V. Vinogradov, Fluctuation properties of compound Poisson–Erlang Lévy processes, Commun. Stoch. Anal., 7:283–302, 2013.

    MathSciNet  Google Scholar 

  17. R.B. Paris and V. Vinogradov, Branching particle systems and compound Poisson processes related to Pólya–Aeppli distributions, Commun. Stoch. Anal., 9:43–67, 2015.

    Google Scholar 

  18. R.B. Paris and V. Vinogradov, Refined local approximations for some exponential dispersion models comprised of Poisson–Tweedie mixtures, Commun. Stat., Theory Methods, 2016 (to be submitted for publication).

  19. T.R. Prabhaker, A singular integral equation with a generalized Mittag–Leffler function in the kernel, Yokohama Math. J., 19:7–15, 1971.

    MathSciNet  Google Scholar 

  20. L.J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, 1960.

    MATH  Google Scholar 

  21. R. Stankovié, On the function of E.M. Wright, Publ. Inst. Math., Nouv. Sér., 18:113–124, 1970.

    MathSciNet  Google Scholar 

  22. V. Vinogradov, Refined Large Deviation Limit Theorems, Longman, Harlow, 1994.

    MATH  Google Scholar 

  23. V. Vinogradov, On approximations for two classes of Poisson mixtures, Stat. Probab. Lett., 78:358–366, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Vinogradov, R.B. Paris, and O.L. Yanushkevichiene, New properties and representations for members of the power-variance family. I, Lith. Math. J., 52(4):444–461, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Vinogradov, R.B. Paris, and O.L. Yanushkevichiene, New properties and representations for members of the power-variance family. II, Lith. Math. J., 53(1):103–120, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Vinogradov, R.B. Paris, and O.L. Yanushkevichiene, Erratum to “New properties and representations for members of the power-variance family. II”, Lith. Math. J., 54(2):229, 2014.

  27. R. Wong and Y.-Q. Zhao, Smoothing of Stokes’s discontinuity for the generalized Bessel function, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 455:1381–1400, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  28. E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. Lond. Math. Soc. (2), 38:257–270, 1935.

    Article  MathSciNet  MATH  Google Scholar 

  29. E.M. Wright, The generalized Bessel function of order greater than one, Q. J. Math., Oxf. Ser., 11:36–48, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  30. V.M. Zolotarev, One-Dimensional Stable Distributions, AMS, Providence, RI, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Paris.

Additional information

Dedicated to the memory of Lee Lorch, 1915–2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, R.B., Vinogradov, V. Asymptotic and structural properties of special cases of the Wright function arising in probability theory. Lith Math J 56, 377–409 (2016). https://doi.org/10.1007/s10986-016-9324-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-016-9324-1

MSC

Keywords

Navigation