Skip to main content
Log in

Exponentially small expansions of the Wright function on the Stokes lines

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We investigate a particular aspect of the asymptotic expansion of the Wright function pΨq(z) for large |z|. In the case p = 1, q ⩾ 0, we establish the form of the exponentially small expansion of this function on certain rays in the z-plane (known as Stokes lines). The importance of such exponentially small terms is encountered in analytic probability theory and in the theory of generalised linear models. In addition, the transition of the Stokes multiplier connected with the subdominant exponential expansion across the Stokes lines is shown to obey the familiar error-function smoothing law expressed in terms of an appropriately scaled variable. Some numerical examples which confirm the accuracy of the expansion are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. R. Soc. London, Ser. A, 122:7–21, 1989.

    Article  Google Scholar 

  2. B.L.J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compos. Math., 15:239–341, 1963.

    MATH  MathSciNet  Google Scholar 

  3. R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London, 1973.

    MATH  Google Scholar 

  4. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Walters–Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  5. Yu.V. Linnik, On stable probability laws with exponent less than one, Dokl. Akad. Nauk SSSR, 94:619–621, 1954 (in Russian).

    MATH  MathSciNet  Google Scholar 

  6. F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974. Reprinted by A.K. Peters, Wellesley, MA, 1997.

    Google Scholar 

  7. F.W.J. Olver, On Stokes’ phenomenon and converging factors, in R. Wong (Ed.), Proceedings of the International Conference on Asymptotic and Computational Analysis (Winnipeg, Canada, June 5–7, 1989), Marcel Dekker, New York, 1990, pp. 329–355.

    Google Scholar 

  8. F.W.J. Olver, Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral, SIAM J. Math. Anal., 22:1460–1474, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.B. Paris, Smoothing of the Stokes phenomenon using Mellin–Barnes integrals, J. Comput. Appl. Math., 41:117–133, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.B. Paris, Smoothing of the Stokes phenomenon for high-order differential equations, Proc. R. Soc. London, Ser. A, 436:165–186, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.B. Paris, Exponential asymptotics of the Mittag-Leffler function, Proc. R. Soc. London, Ser. A, Math. Phys. Eng. Sci., 458:3041–3052, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.B. Paris, Exponentially small expansions in the asymptotics of the Wright function, J. Comput. Appl. Math., 234:488–504, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.B. Paris, Hadamard Expansions and Hyperasymptotic Evaluation, Cambridge Univ. Press, Cambridge, 2011.

    Book  MATH  Google Scholar 

  14. R.B. Paris, Exponential smoothing of the Wright function, Technical Report MS 11:01, University of Abertay Dundee, 2011.

  15. R.B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes Integrals, Cambridge Univ. Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  16. R.B. Paris and V. Vinogradov, Refined local approximations for members of some Poisson–Tweedie EDMs, 2013 (in preparation).

  17. R.B. Paris and A.D. Wood, Asymptotics of High Order Differential Equations, Pitman Res. Notes Math. Ser., Vol. 129, Longman Scientific and Technical, Harlow, 1986.

  18. A.V. Skorokhod, Asymptotic formulas for stable distribution laws, Dokl. Akad. Nauk SSSR, 98:731–734, 1954 (in Russian).

    MATH  MathSciNet  Google Scholar 

  19. L.J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966.

    MATH  Google Scholar 

  20. V. Vinogradov, R.B. Paris, and O. Yanushkevichiene, New properties and representations for members of the power-variance family. I, Lith. Math. J., 52:444–461, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Vinogradov, R.B. Paris, and O. Yanushkevichiene, New properties and representations for members of the power-variance family. II, Lith. Math. J., 53:103–120, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. Vinogradov, R.B. Paris, and O. Yanushkevichiene, The Zolotarev polynomials revisited, in XXXI International Seminar on Stability Problems for Stochastic Models, Institute of Informatics Problems, Russian Academy of Sciences, Moscow, 2013, pp. 68–70.

  23. R. Wong and Y.-Q. Zhao, Smoothing of Stokes’s discontinuity for the generalized Bessel function, Proc. R. Soc. London, Ser. A, Math. Phys. Eng. Sci., 455:1381–1400, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Wong and Y.-Q. Zhao, Exponential asymptotics of the Mittag-Leffler function, Constr. Approx., 18:355–385, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  25. E.M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10:286–293, 1935.

    Google Scholar 

  26. E.M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (2), 46:389–408, 1940.

    Article  MathSciNet  Google Scholar 

  27. V.M. Zolotarev, Expression of the density of a stable distribution with exponent α greater than one by means of a density with exponent 1, Dokl. Akad. Nauk SSSR, 98:735–738, 1954 (in Russian).

    MATH  MathSciNet  Google Scholar 

  28. V.M. Zolotarev, One-Dimensional Stable Distributions, Amer. Math. Soc., Providence, RI, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Paris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, R.B. Exponentially small expansions of the Wright function on the Stokes lines. Lith Math J 54, 82–105 (2014). https://doi.org/10.1007/s10986-014-9229-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-014-9229-9

MSC

Keywords

Navigation