Skip to main content
Log in

Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the hurst parameter

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this contribution, the statistical performance of the wavelet-based estimation procedure for the Hurst parameter is studied for non-Gaussian long-range dependent processes obtained from point transformations of Gaussian processes. The statistical properties of the wavelet coefficients and the estimation performance are compared both for processes having the same covariance but different marginal distributions and for processes having the same covariance and same marginal distributions but obtained from different point transformations, analyzed using mother wavelets with different number of vanishing moments. It is shown that the reduction of the dependence range from long to short by increasing the number of vanishing moments, observed for Gaussian processes, and at the origin of the popularity of the wavelet-based estimator, does not hold in general for non-Gaussian processes. Crucially, it is also observed that the Hermite rank of the point transformation impacts significantly the statistical properties of the wavelet coefficients and the estimation performance and also that processes having identical marginal distributions and covariance function can yet yield significantly different estimation performance. These results are interpreted in the light of central and noncentral limit theorems that are fundamental when dealing with long-range dependent processes. Moreover, it will be shown that, on condition that estimation is performed using a range of scales restricted to the coarsest practically available, an approximate, yet analytical and simple to use in practice, formula can be proposed for the evaluation of the variance of the wavelet-based estimator of the Hurst parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, and D. Veitch, Multiscale network traffic analysis, modeling, and inference using wavelets, multifractals, and cascades, IEEE Signal Process. Mag., 19(3):28–46, 2002.

    Article  Google Scholar 

  2. P. Abry, P. Flandrin, M.S. Taqqu, and D. Veitch, Wavelets for the analysis, estimation and synthesis of scaling data, in Self-Similar Network Traffic and Performance Evaluation, Wiley, New York, 2000.

    Google Scholar 

  3. P. Abry, P. Gonçalvès, and P. Flandrin, Wavelets, spectrum estimation and 1/f processes, in A. Antoniadis and G. Oppenheim (Eds.), Wavelets and Statistics, Lect. Notes Stat., Vol. 103, Springer-Verlag, New York, 1995.

    Google Scholar 

  4. P. Abry, P. Gonçalvès, and J. Levy Vehel (Eds.), Scaling, Fractals and Wavelets, ISTE/Wiley, London, UK/ Hoboken, USA, 2009.

    MATH  Google Scholar 

  5. P. Abry, H. Helgason, P. Gonçalvès, E. Pereira, P. Gaucherand, and M. Doret, Multifractal analysis of ECG for intrapartum diagnosis of fetal asphyxia, in Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2010, pp. 566–569.

  6. P. Abry and D. Veitch, Wavelet analysis of long-range dependent traffic, IEEE Trans. Inform. Theory, 44(1):2–15, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Achard, D.S. Bassett, A. Meyer-Lindenberg, and E. Bullmore, Fractal connectivity of long-memory networks, Phys. Rev. E, 77M(3):036104, 2008.

    Article  Google Scholar 

  8. O.E. Bandorff-Nielsen and N.N. Leonenko, Spectral properties of superpositions of Ornstein–Uhlenbeck type processes, Methodol. Comput. Appl. Probab., 7(3):335–352, 2005.

    Article  MathSciNet  Google Scholar 

  9. J.-M. Bardet, Testing for the presence of self-similarity of Gaussian time series having stationary increments, J. Time Ser. Anal., 21:497–515, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-M. Bardet, Statistical study of the wavelet analysis of fractional Brownian motion, IEEE Trans. Inform. Theory, 48(4):991–999, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev, and M.S. Taqqu, Semi-parametric estimation of the long-range dependence parameter: A survey, in P. Doukhan, G. Oppenheim, and M.S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, pp. 557–577.

    Google Scholar 

  12. J.-M. Bardet and C. Tudor, A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter, preprint.

  13. J. Beran, Statistics for Long-Memory Processes, Chapman & Hall, 1994.

  14. J.-F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths, Stat. Infer. Stoch. Process., 4(2):199–227, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Dittman and C.W.J. Granger, Properties of nonlinear transformations of fractionally integrated processes, J. Econom., 110:113–133, 2002.

    Article  Google Scholar 

  16. P. Doukhan, Models, inequalities, and limit theorems for stationary sequences, in P. Doukhan, G. Oppenheim, and M.S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, pp. 43–101.

    Google Scholar 

  17. P. Doukhan, G. Oppenheim, and M.S. Taqqu, Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  18. P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion, IEEE Trans. Inform. Theory, 38:910–917, 1992.

    Article  MathSciNet  Google Scholar 

  19. U. Frisch, Turbulence. The Legacy of A. Kolmogorov, Cambridge Univ. Press, Cambridge, UK, 1995.

    Google Scholar 

  20. L. Gajek and J. Mielniczuk, Long- and short-range dependent sequences under exponential subordination, Stat. Probab. Lett., 43(2):113–121, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Giraitis and M.S. Taqqu, Whittle estimator for finite-variance non-Gaussian time series with long memory, Ann. Stat., 27(1):178–203, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Grigoriu, Applied Non-Gaussian Processes, Prentice-Hall, 1995.

  23. H. Helgason, V. Pipiras, and P. Abry, Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding, Signal Process., 91:1741–1758, 2011.

    Article  MATH  Google Scholar 

  24. C.C. Heyde and N.N. Leonenko, Student processes, Adv. Appl. Probab., 37(2):342–365, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  25. P.Ch. Ivanov, Scale-invariant aspects of cardiac dynamics, IEEE Eng. Med. Biol. Mag., 26(6):33–37, 2007.

    Article  Google Scholar 

  26. A. Ivanov and N.N. Leonenko, Robust estimators in non-linear regression models with long-range dependence, in L. Pronzato and A. Zhigljavsky (Eds.), Optimal Design and Related Areas in Optimization and Statistics, Springer Optim. Appl., Vol. 28, Springer, 2009, pp. 193–221.

  27. L.S. Liebovitch and A.T. Todorov, Invited editorial on “Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations”, J. Appl. Physiol., 80(5):1446–1447, 1996.

    Google Scholar 

  28. S.B. Lowen and M.C. Teich, Fractal-Based Point Processes, Wiley Ser. Probab. Stat., John Wiley & Sons, Inc., Hoboken, NJ, 2005.

    Book  MATH  Google Scholar 

  29. K. Park andW.Willinger, Self-similar network traffic: An overview, in K. Park andW.Willinger (Eds.), Self-Similar Network Traffic and Performance Evaluation, Wiley, New York, 2000, pp. 1–38.

    Chapter  Google Scholar 

  30. V. Pipiras, M.S. Taqqu, and P. Abry, Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation, Bernoulli, 13(4):1091–1123, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Puig, F. Poirion, and C. Soize, Non-Gaussian simulation using Hermite polynomial expansion: Convergences and algorithms, Probab. Eng. Mech., 17(3):253–264, 2002.

    Article  Google Scholar 

  32. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

  33. A. Scherrer, N. Larrieu, P. Owezarski, P. Borgnat, and P. Abry, Non-Gaussian and long memory statistical characterisations for Internet traffic with anomalies, IEEE Trans. Dependable Secure Comput., 4(1):56–70, 2007.

    Article  Google Scholar 

  34. J.-L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach, Cambridge Univ. Press, Cambridge, 1998.

    Book  Google Scholar 

  35. D. Surgailis, Non-CLTs: U-statistics, multinomial formula and approximations of multiple Ito–Wiener integrals, in P. Doukhan, G. Oppenheim, and M.S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, pp. 111–128.

    Google Scholar 

  36. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verw. Geb., 31:287– 302, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Terdik, Long-range dependence and asymptotic self-similarity in third order, Acta Sci. Math., 74(1–2):425–447, 2008.

    MathSciNet  MATH  Google Scholar 

  38. G. Terdik, Long-range dependence in higher order for non-Gaussian time series, Publ. Math., 76(3–4):379–393, 2010.

    MathSciNet  MATH  Google Scholar 

  39. G. Teyssière and P. Abry, Wavelet analysis of nonlinear long-range dependent processes. Applications to financial time series, in G. Teyssière and A.P. Kirman (Eds.), Long Memory in Econometrics, Springer, Berlin, 2007.

    Chapter  Google Scholar 

  40. B. Védel, H. Wendt, P. Abry, and S. Jaffard, On the impact of the number of vanishing moments on the dependence structures of compound Poisson motion and fractional Brownian motion in multifractal time, in P. Doukhan, G. Lang, G. Teyssière, and D. Surgailis (Eds.), Dependence in Probability and Statistics, Springer, 2010, pp. 71–101.

  41. D. Veitch and P. Abry, A wavelet based joint estimator of the parameters of long-range dependence, IEEE Trans. Inform. Theory, 45(3):878–897, 1999. (Special issue on “Multiscale Statistical Signal Analysis and Its Applications.”)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Abry.

Additional information

Work partially supported by the 2007 Young Research Team award granted by Foundation del Duca, Académie des Sciences, Institut de France, and by the NSF grant DMS-060866.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abry, P., Helgason, H. & Pipiras, V. Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the hurst parameter. Lith Math J 51, 287–302 (2011). https://doi.org/10.1007/s10986-011-9126-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-011-9126-4

MSC

Keywords

Navigation