Skip to main content
Log in

Wavelet Estimation of Gegenbauer Processes: Simulation and Empirical Application

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The aim of this paper is to estimate the parameters of a stationary Gegenbauer process using a wavelet methodology where the selection of the orthonormal basis is given by generalized variance portmanteau test. Two other maximum likelihood estimators, including the Whittle and the wavelets—Whitcher (Technometrics 46:225–238, 2004) estimators, are also considered. We have shown by Monte-Carlo experiments that the new selection procedure improves considerably the Whittle and Whitcher estimators. Moreover, to assess the impact of volatility in the estimation methods, we assumed that the innovations \(\varepsilon _{t}\) are generated by univariate GARCH process. Simulation experiments show that the wavelets estimators perform better under most situations than the Whittle estimator. We then applied this new selection method to the consumer price index in monthly frequencies for the United States and find that this is more appropriate for forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This section draws heavily on Boubaker and Boutahar (2011) and Boubaker and Péguin-Feissolle (2013).

  2. The wavelet function (filter) proceeds as a special filter possessing specific properties, such that (i) it integrates to zero, i.e., \( \sum _{l=0}^{L-1}h_{l}=0\), (ii) has unit energy, i.e., \( \sum _{l=0}^{L-1}h_{l}^{2}=1\) and (iii) is orthogonal to its even shifts, i.e., \(\sum _{l=0}^{L-1}h_{l}h_{l+2n}=0,\) for all nonzero integers \(n.\)

  3. For Daubechies wavelets, the number of vanishing moments is half the filter length.

  4. A robust theoretical framework for critically sampled wavelet transformation is Mallat’s Multiresolution Analysis (see Mallat 1989) which is a design method underlying the conception of the DWT and the construction of the wavelet bases.

  5. The portmanteau statistic introduced by Box and Pierce (1970) is \({\hat{Q}_{m}}=N\sum \nolimits _{\varkappa =1}^{m}{\hat{ r}_{\varkappa }^{2}}\), and that of introduced by Ljung and Box (1978) is given by \({\hat{Q}_{m}}=N\left( {N+2}\right) \sum \nolimits _{\varkappa =1}^{m}{{ {\left( {N-\varkappa }\right) }^{-1}}\hat{r}_{\varkappa }^{2}}\).

  6. Whitcher (2001) and Collet and Fadili (2005) propose a method for simulating of Gegenbauer processes using the wavelet packets transform.

  7. We also used others values of \(m\). We observe that the sensitivity of the results to the value of \(m\) is very small. Thus, the choice of \(m\) is arbitrary. The different results are supplied upon request.

  8. We conduct the same simulations using \(D(L)\) and \(LA(L)\) filters and we find that the \(MB(L)\) performs better the simulations than \(D(L)\) and \(LA(L)\) regardless of the method of selection of the best basis. Here, we do not report the results, these are available upon request.

  9. Other simulations with other different parameters yield similar conclusion.

  10. A preliminary analysis to test the stationarity, using the ADF (Dickey and Fuller 1979, 1981), the PP (Phillips and Perron 1988) and the KPSS (Kwiatkowski et al. 1992) tests of the series in level shows evidence of presence of unit roots. So, we consider the log CPI in first difference.

  11. We note that we do not find evidence of time-varying volatility. Therefore, we do not estimate the GARCH-type dynamics for conditional variance.

  12. MSE: the Mean Square Error and MAPE: the Mean Absolute Prediction Error expressed as a percentage.

References

  • Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall.

    MATH  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  • Boubaker, H., & Boutahar, M. (2011). A wavelet-based approach for modelling exchange rates. Statistical Methods and Applications, 20, 201–220.

    Article  MATH  MathSciNet  Google Scholar 

  • Boubaker, H., & Péguin-Feissolle, A. (2013). Estimating the long-memory parameter in nonstationary processes using wavelets. Computational Economics, 42, 291–306.

    Article  Google Scholar 

  • Box, G., & Pierce, D. (1970). Distribution of residual autocorrelation in autoregressive integrated moving average time series models. Journal of American Statistical Association, 65, 1509–1526.

    Article  MATH  MathSciNet  Google Scholar 

  • Chung, C.-F. (1996a). Estimating a generalized long memory process. Journal of Econometrics, 73, 237–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Chung, C.-F. (1996b). A generalized fractionally integrated autoregressive moving-average process. Journal of Time Series Analysis, 17, 111–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Collet, J.J., & Fadili, M.J. (2005). Simulation of Gegenbauer Processes using Wavelet Packets. Technical report, GREYC CNRS-ENSICAEN-Univ. de Caen (France) and Queensland University of Technology (Australia).

  • Daubechies, I. (1992). Ten Lectures on Wavelets. volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics.

  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427–431.

    MATH  MathSciNet  Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1981). The likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49, 1057–1072.

    Article  MATH  MathSciNet  Google Scholar 

  • Diongue, A. K., & Guégan, D. (2008). Estimation of k-factor GIGARCH process: A Monte Carlo study. Communications in Statistics-Simulation and Computation, 37, 2037–2049.

    Article  MATH  MathSciNet  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1008.

    Article  MATH  MathSciNet  Google Scholar 

  • Gençay, M., Selçuk, F., & Whitcher, B. (2002). An introduction to wavelets and other filtering methods in finance and economics. Waltham: Academic Press.

    MATH  Google Scholar 

  • Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Gray, H. L., Zhang, N.-F., & Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis, 10, 233–257.

    Article  MATH  MathSciNet  Google Scholar 

  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165–176.

    Article  MATH  MathSciNet  Google Scholar 

  • Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20, 1898–1908.

    Article  ADS  Google Scholar 

  • Kwiatkowski, D., Phillips, P., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationnary against the alternative of unit root. Journal of Econometrics, 54, 159–178.

    Article  MATH  Google Scholar 

  • Lin, J., & McLeod, A. I. (2006). Improved Peña–Rodriguez portmanteau test. Computational Statistics and Data Analysis, 51, 1731–1738.

    Article  MATH  MathSciNet  Google Scholar 

  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65, 297–303.

    Article  MATH  Google Scholar 

  • Mahdi, E., & McLeod, A. I. (2012). Improved multivariate portmanteau diagnostic test. Journal of Time Series Analysis, 33, 211–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

    Article  MATH  ADS  Google Scholar 

  • Mallat, S. (1999). A wavelet tour of signal processing. San Diego: Academic Press.

    MATH  Google Scholar 

  • Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397–3415.

    Article  MATH  ADS  Google Scholar 

  • Monti, A. C. (1994). A proposal for residual autocorrelation test in linear models. Biometrika, 81, 776–780.

    Article  MATH  MathSciNet  Google Scholar 

  • Morris, J. M., & Peravali, R. (1999). Minimum-bandwidth discrete-time wavelets. Signal Processing, 76, 181–193.

    Article  MATH  Google Scholar 

  • Peña, D., & Rodriguez, J. (2002). A powerful portmanteau test of lack of test for time series. Journal of the American Statistical Association, 97, 601–610.

    Article  MATH  MathSciNet  Google Scholar 

  • Peña, D., & Rodriguez, J. (2006). The log of the determinant of the autocorrelation matrix for testing goodness of fit in time series. Journal of Statistical Planning and Inference, 136, 2706–2718.

    Article  MATH  MathSciNet  Google Scholar 

  • Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75, 335–346.

    Article  MATH  MathSciNet  Google Scholar 

  • Whitcher, B. (2001). Simulating Gaussian stationary processes with unbounded spectra. Journal of Computational and Graphical Statistics, 10, 112–134.

    Article  MathSciNet  Google Scholar 

  • Whitcher, B. (2004). Wavelet-based estimation for seasonal long-memory processes. Technometrics, 46, 225–238.

    Article  MathSciNet  Google Scholar 

  • Woodward, W. A., Cheng, Q. C., & Gray, H. L. (1998). A k-factor GARMA long-memory model. Journal of Time Series Analysis, 19, 485–504.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heni Boubaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubaker, H. Wavelet Estimation of Gegenbauer Processes: Simulation and Empirical Application. Comput Econ 46, 551–574 (2015). https://doi.org/10.1007/s10614-014-9471-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-014-9471-6

Keywords

JEL Classification

Navigation