Skip to main content

Advertisement

Log in

Reweighted estimators for additive hazard model with censoring indicators missing at random

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Survival data with missing censoring indicators are frequently encountered in biomedical studies. In this paper, we consider statistical inference for this type of data under the additive hazard model. Reweighting methods based on simple and augmented inverse probability are proposed. The asymptotic properties of the proposed estimators are established. Furthermore, we provide a numerical technique for checking adequacy of the fitted model with missing censoring indicators. Our simulation results show that the proposed estimators outperform the simple and augmented inverse probability weighted estimators without reweighting. The proposed methods are illustrated by analyzing a dataset from a breast cancer study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breslow N, Day N (1980) Statistical models in cancer research, 1, the design and analysis of case-control studies, IARC, Lyon

  • Cummings F, Gray R, Davis T, Tormey D, Harris J, Falkson G, Arseneau J (1986) Tamoxifen versus placebo: double-blind adjuvant trial in elderly women with stage II breast cancer. NCI Monograph 1:119–123

    Google Scholar 

  • Horvitz D, Thompson D (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47(260):663–685

    Article  MathSciNet  MATH  Google Scholar 

  • Hyun S, Lee J, Sun Y (2012) Proportional hazards model for competing risks data with missing cause of failure. J Stat Plan Inference 142(7):1767–1779

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Wang Q (2012) The weighted least square based estimators with censoring indicators missing at random. J Stat Plan Inference 142(11):2913–2925

    Article  MathSciNet  MATH  Google Scholar 

  • Lin W (2011) Missing covariates and high dimensional variable selection in additive hazards regression. PhD thesis of University of Southern California

  • Lin D, Wei L, Ying Z (1993) Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80(3):557–572

    Article  MathSciNet  MATH  Google Scholar 

  • Lin D, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81(1):61–71

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C, Wang Q (2010) Semiparametric estimation for regression coefficients in the Cox model with failure indicators missing at random. Stat Sinica 20(3):1125–1142

    MathSciNet  MATH  Google Scholar 

  • Lu K, Tsiatis A (2001) Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics 57(4):1191–1197

    Article  MathSciNet  MATH  Google Scholar 

  • Lu W, Liang Y (2008) Analysis of competing risks data with missing cause of failure under additive hazards model. Stat Sinica 18(1):219–234

    MathSciNet  MATH  Google Scholar 

  • McKeague I, Subramanian S (1998) Product-limit estimators and Cox regression with missing censoring information. Scand J Stat 25(4):589–601

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Wang C, Prentice R (2005) Weighted estimators for proportional hazards regression with missing covariates. J Am Stat Assoc 100(472):1250–1263

    Article  MathSciNet  MATH  Google Scholar 

  • Robins J, Rotnitzky A, Zhao L (1994) Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc 89(427):846–866

    Article  MathSciNet  MATH  Google Scholar 

  • Song X, Sun L, Mu X, Dinse G (2010) Additive hazards regression with censoring indicators missing at random. Can J Stat 38(3):333–351

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Y, Wang H, Gilbert P (2012) Quantile regression for competing risks data with missing cause of failure. Stat Sinica 22(2):703–728

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiatis A (2006) Semiparametric theory and missing data. Springer, New York

    MATH  Google Scholar 

  • Wang Q, Dinse G (2011) Linear regression analysis of survival data with missing censoring indicators. Lifetime Data Anal 17(2):256–279

    Article  MathSciNet  MATH  Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Q, Paik M, Luo X, Tsai W (2009) Reweighting estimators for Cox regression with missing covariates. J Am Stat Assoc 104(487):1155–1167

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Sun L (2003) Additive hazards regression with missing censoring information. Stat Sinica 13(4):1237–1257

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Editor-in-Chief, the Associate Editor, and two referees for their insightful comments and suggestions that greatly improved the article. Funding was provided by National Natural Science Foundation of China (Grant Nos. 11201484, 11326184, 11501573, 61402534), Natural Science Foundation of Shandong Province of China (Grant No. ZR2015AL014), National Cancer Institute (Grant No. P01CA142538) and National Institute of Environmental Health Sciences (Grant No. R01ES021900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Cai.

Appendix

Appendix

1.1 Regularity conditions and sketch proofs of the main results

For proofs of the theorems, we list the following regularity conditions.

  1. (C1):

    \(\Lambda _{0}(\tau )<\infty \) and \(\mathrm {Pr}\{Y(\tau )=1\}>0\);

  2. (C2):

    Z is bounded with probability 1 and time-independent;

  3. (C3):

    The matrix A is positive definite.

  4. (C4):

    The observation probability \(\pi (W,\alpha )\) is bounded away from 0; \(\pi (W,\alpha )\) is twice continuously differentiable in \(\alpha \); There exists a compact neighborhood \(\mathcal {A}\) of \(\alpha _{0}\) such that \(E[\mathrm {sup}_{\alpha \in \mathcal {A}}\{\Vert \dot{\pi }(W,\alpha )\Vert ^{2} +\Vert \ddot{\pi }(W,\alpha )\Vert \}]<\infty \), where \(\dot{\pi }(W,\alpha )=\partial \pi (W,\alpha )/\partial \alpha \) and \(\ddot{\pi }(W,\alpha )=\partial ^{2} \pi (W,\alpha )/\partial \alpha \partial \alpha ^{T}\); There exists \(\alpha _{*}\) satisfying the equations \(E(S_{\alpha _{*}}^{*})=0\), where \(S_{\alpha }^{*}=(\xi -\pi (W,\alpha ))[\pi (W,\alpha )(1-\pi (W,\alpha ))]^{-1}\dot{\pi }(W,\alpha )\).

  5. (C5):

    \(\rho (W,\gamma )\) is twice continuously differentiable in \(\gamma \); There exists \(\gamma _{*}\) satisfying the equations \(E(S_{\gamma _{*}}^{*})=0\), where \(S_{\gamma }^{*}=\xi (\delta -\rho (W,\gamma ))[\rho (W,\gamma )(1-\rho (W,\gamma ))]^{-1}\dot{\rho }(W,\gamma )\).

All these conditions are standard for the derivation of asymptotic results in the survival analysis and parametric inference.

Proof of Theorem 1

By some simple algebraic calculations, it can be seen that

$$\begin{aligned} n^{\frac{1}{2}}(\hat{\beta }_{sr}-\beta _{0})= & {} \Big [\frac{1}{n}\sum \limits _{i=1}^{n}\int \limits _{0}^{\tau }\xi _{i}\frac{\hat{\pi }^{*}(t)}{\pi (W_{i},\hat{\alpha })} \{Z_{i}-\bar{Z}_{sr}(t,\hat{\alpha })\}^{\otimes 2}Y_{i}(t)dt\Big ]^{-1} \\&\times \Big [n^{-\frac{1}{2}}\sum \limits _{j=1}^{n}\int \limits _{0}^{\tau }\xi _{j} \frac{\hat{\pi }^{*}(t)}{\pi (W_{j},\hat{\alpha })} \{Z_{j}-\bar{Z}_{sr}(t,\hat{\alpha })\}dM_{j}(t)\Big ]. \end{aligned}$$

Under conditions (C1), (C2) and (C4), it can be shown that

$$\begin{aligned} \mathrm {sup}_{t\in [0,\tau ]}\Vert \hat{\pi }^{*}(t)-\pi ^{*}(t)\Vert= & {} o_{p}(1), \end{aligned}$$
(A.1)
$$\begin{aligned} \mathrm {sup}_{t\in [0,\tau ]}\Vert S_{sr}^{(k)}(t,\hat{\alpha })-s^{(k)}(t)\Vert= & {} o_{p}(1), k=0,1,2, \end{aligned}$$
(A.2)
$$\begin{aligned} \mathrm {sup}_{t\in [0,\tau ]}\Vert \bar{Z}_{sr}(t,\hat{\alpha })-\bar{z}(t)\Vert= & {} o_{p}(1). \end{aligned}$$
(A.3)

By (A.1), (A.3) and the fact that \(\hat{\alpha }\xrightarrow {\mathrm {P}}\alpha _{0}\), we have

It is easy to see that

$$\begin{aligned} n^{\frac{1}{2}}U_{sr}(\beta _{0},\hat{\alpha })= n^{-\frac{1}{2}}\sum \limits _{i=1}^{n}\int \limits _{0}^{\tau }\xi _{i} \frac{\hat{\pi }^{*}(t)}{\pi (W_{i},\hat{\alpha })} \{Z_{i}-\bar{Z}_{sr}(t,\hat{\alpha })\}dM_{i}(t). \end{aligned}$$

So we can conclude that

$$\begin{aligned} n^{\frac{1}{2}}(\hat{\beta }_{sr}-\beta _{0})=(A+o_{p}(1))^{-1} n^{\frac{1}{2}}U_{sr}(\beta _{0},\hat{\alpha }). \end{aligned}$$
(A.4)

By the Taylor expansion of \(n^{\frac{1}{2}}U_{sr}(\beta _{0},\hat{\alpha })\) at \(\alpha _{0}\),

$$\begin{aligned} n^{\frac{1}{2}}U_{sr}(\beta _{0},\hat{\alpha })=n^{\frac{1}{2}}U_{sr}(\beta _{0},\alpha _{0}) +\frac{\partial U_{sr}(\beta _{0},\alpha )}{\partial \alpha ^{T}}\Big |_{\alpha =\alpha _{0}} n^{\frac{1}{2}}(\hat{\alpha }-\alpha _{0})+o_{p}(1), \end{aligned}$$
(A.5)

where

$$\begin{aligned}&-\frac{\partial U_{sr}(\beta _{0},\alpha )}{\partial \alpha ^{T}} \\&\quad =\frac{1}{n}\sum \limits _{i=1}^{n}\frac{\xi _{i}}{\pi ^{2}(W_{i},\alpha )} \int \limits _{0}^{\tau }\hat{\pi }^{*}(t)\{Z_{i}-\bar{Z}_{sr}(t,\alpha )\}dM_{i}(t)\dot{\pi }^{T}(W_{i},\alpha )\\&\qquad +\frac{1}{n}\sum \limits _{i=1}^{n}\frac{\xi _{i}}{\pi (W_{i},\alpha )} \int \limits _{0}^{\tau }\hat{\pi }^{*}(t) \Big \{\frac{S_{sr}^{(1)}(t,\alpha )}{(S_{sr}^{(0)}(t,\alpha ))^{2}} \Big [\frac{1}{n}\sum \limits _{j=1}^{n}\frac{\xi _{j}}{\pi ^{2}(W_{j},\alpha )}\dot{\pi }^{T}(W_{j},\alpha )Y_{j}(t)\Big ]\\&\qquad -\frac{1}{S_{sr}^{(0)}(t,\alpha )} \Big [\frac{1}{n}\sum _{j=1}^{n}\frac{\xi _{j}}{\pi ^{2}(W_{j},\alpha )}Y_{j}(t)Z_{j}\dot{\pi }^{T}(W_{j},\alpha )\Big ] \Big \} dM_{i}(t). \end{aligned}$$

By (A.1) to (A.3) and the law of large numbers, it can be proven that

(A.6)

where

$$\begin{aligned} V_{\alpha _{_0}}= & {} E\Big [\int \limits _{0}^{\tau }\{Z-\bar{z}(t)\} \frac{1}{\pi (W,\alpha _{_0})}\dot{\pi }^{T}(W,\alpha _{_0})\pi ^{*}(t)dM(t)\Big ]\\&-E\Big [\int \limits _{0}^{\tau }\Big \{\frac{h^{(2)}(t)}{s^{(0)}(t)} -\frac{s^{(1)}(t)h^{(1)}(t)}{(s^{(0)}(t))^{2}}\Big \}\pi ^{*}(t)dM(t)\Big ],\\ h^{(1)}(t)= & {} \mathrm {E}\Big [\frac{1}{\pi (W,\alpha _{0})}\dot{\pi }^{ T}(W,\alpha _{0})Y(t)\Big ] \end{aligned}$$

and

$$\begin{aligned} h^{(2)}(t)=\mathrm {E}\Big [\frac{1}{\pi (W,\alpha _{0})}Y(t)Z\dot{\pi }^{ T}(W,\alpha _{0})\Big ]. \end{aligned}$$

By (A.1), (A.3) and Lemma A.1 of Qi et al. (2005), we can obtain that

$$\begin{aligned} n^{\frac{1}{2}}U_{sr}(\beta _{0},\alpha _{0})= n^{-\frac{1}{2}}\sum \limits _{i=1}^{n} \frac{\xi _{i}}{\pi (W_{i},\alpha _{0})} \int \limits _{0}^{\tau }\pi ^{*}(t)\{Z_{i}-\bar{z}(t)\}dM_{i}(t)+o_{p}(1).\qquad \quad \end{aligned}$$
(A.7)

Define

$$\begin{aligned} S_{\alpha _{_0}}=\frac{\xi -\pi (W,\alpha _{_0})}{\pi (W,\alpha _{_0})\{1-\pi (W,\alpha _{_0})\}}\dot{\pi }(W,\alpha _{_0}) \end{aligned}$$

and

$$\begin{aligned} I_{\alpha _{_0}}=E\Big [S_{\alpha _{_0}}S_{\alpha _{_0}}^{T} -\frac{\xi -\pi (W,\alpha _{_0})}{\pi (W,\alpha _{_0})\{1-\pi (W,\alpha _{_0})\}}\ddot{\pi }(W,\alpha _{_0})\Big ], \end{aligned}$$

which are score and information matrices of \(\pi (W,\alpha )\) respectively. Then under condition (C4), it can be shown that

$$\begin{aligned} n^{\frac{1}{2}}(\hat{\alpha }-\alpha _{0})= n^{-\frac{1}{2}}\sum \limits _{i=1}^{n}I_{\alpha _{_0}}^{-1}S_{\alpha _{_0},i}+o_{p}(1), \end{aligned}$$
(A.8)

where \(S_{\alpha ,i}\) is obtained through replacing \(\xi \) and W by \(\xi _{i}\) and \(W_{i}\) in \(S_{\alpha }\) respectively. By (A.4) to (A.8), we finally arrive at

$$\begin{aligned}&n^{\frac{1}{2}}(\hat{\beta }_{sr}-\beta _{0}) \\&\quad = A^{-1}n^{-\frac{1}{2}}\sum \limits _{i=1}^{n} \Big [\frac{\xi _{i}}{\pi (W_{i},\alpha _{0})} \int \limits _{0}^{\tau }\pi ^{*}(t)\{Z_{i}-\bar{z}(t)\}dM_{i}(t) -V_{\alpha _{_0}}I_{\alpha _{_0}}^{-1}S_{\alpha _{_0},i}\Big ]+o_{p}(1). \end{aligned}$$

By the central limit theorem, the desired result is proved. \(\square \)

Proof of Theorem 2

It is easily verified that

$$\begin{aligned}&n^{\frac{1}{2}}(\hat{\beta }_{ar}-\beta _{0}) \nonumber \\&\quad = \left[ \frac{1}{n}\sum _{i=1}^{n}\int \limits _{0}^{\tau }\hat{\pi }^{*}(t) \left\{ Z_{i}-\bar{Z}_{ar}(t)\right\} ^{\otimes 2}Y_{i}(t)dt\right] ^{-1} \nonumber \\&\qquad \times \left[ n^{-\frac{1}{2}}\sum \limits _{j=1}^{n}\int \limits _{0}^{\tau } \left\{ Z_{j}-\bar{Z}_{ar}(t)\right\} \hat{\pi }^{*}(t) \left\{ \frac{\xi _{j}}{\pi (W_{j},\hat{\alpha })}dN_{j}(t)\right. \right. \nonumber \\&\left. \left. \qquad +\left( 1-\frac{\xi _{j}}{\pi (W_{j},\hat{\alpha })}\right) \rho (W_{j},\hat{\gamma })dN_{j}^{*}(t) -Y_{j}(t)\beta _{0}^{T}Z_{j}dt-Y_{j}(t)d\Lambda _{0}(t)\right\} \right] \nonumber \\&\quad =\left[ \frac{1}{n}\sum \limits _{i=1}^{n}\int \limits _{0}^{\tau }\hat{\pi }^{*}(t) \left\{ Z_{i}-\bar{Z}_{ar}(t)\right\} ^{\otimes 2}Y_{i}(t)dt\right] ^{-1}\nonumber \\&\,\,\,\,\qquad \times \left[ n^{-\frac{1}{2}}\sum _{j=1}^{n}\int \limits _{0}^{\tau } \left\{ Z_{j}-\bar{Z}_{ar}(t)\right\} \hat{\pi }^{*}(t)d\hat{M}_{j}^{*}(t)\right] , \end{aligned}$$
(A.9)

where

$$\begin{aligned}&d\hat{M}_{j}^{*}(t)\\&\quad =\frac{\xi _{j}}{\pi (W_{j},\hat{\alpha })}dN_{j}(t) +\left( 1-\frac{\xi _{j}}{\pi (W_{j},\hat{\alpha })}\right) \rho (W_{j},\hat{\gamma })dN_{j}^{*}(t)\\&\qquad -Y_{j}(t)\beta _{0}^{T}Z_{j}dt-Y_{j}(t)d\Lambda _{0}(t). \end{aligned}$$

By the fact that

$$\begin{aligned} \mathrm {sup}_{t\in [0,\tau ]}\Vert \bar{Z}_{ar}(t)-\bar{z}(t)\Vert =o_{p}(1) \end{aligned}$$
(A.10)

and (A.1), we can conclude that

(A.11)

By (A.11), we have

$$\begin{aligned} n^{\frac{1}{2}}(\hat{\beta }_{ar}-\beta _{0})=(A+o_{p}(1))^{-1} n^{\frac{1}{2}}U_{ar}(\beta _{0},\hat{\alpha },\hat{\gamma }). \end{aligned}$$
(A.12)

By the Taylor expansion of \(n^{\frac{1}{2}}U_{ar}(\beta _{0},\hat{\alpha },\hat{\gamma })\) at \(\alpha _{*}\) and \(\gamma _{*}\),

$$\begin{aligned}&n^{\frac{1}{2}}U_{ar}(\beta _{0},\hat{\alpha },\hat{\gamma }) \nonumber \\&\quad =n^{\frac{1}{2}}U_{ar}(\beta _{0},\alpha _{*},\gamma _{*}) +\frac{\partial U_{ar}(\beta _{0},\alpha ,\gamma )}{\partial \alpha ^{T}}\Big |_{\alpha =\alpha _{*},\gamma =\gamma _{*}} n^{\frac{1}{2}}(\hat{\alpha }-\alpha _{*}) \nonumber \\&\qquad +\,\frac{\partial U_{ar}(\beta _{0},\alpha ,\gamma )}{\partial \gamma ^{T}}\Big |_{\alpha =\alpha _{*},\gamma =\gamma _{*}} n^{\frac{1}{2}}(\hat{\gamma }-\gamma _{*}) +o_{p}(1), \end{aligned}$$
(A.13)

where

$$\begin{aligned}&-\frac{\partial U_{ar}(\beta _{0},\alpha ,\gamma )}{\partial \alpha ^{T}} \\&\quad {=}\frac{1}{n}\sum \limits _{i=1}^{n}\int \limits _{0}^{\tau }\left\{ Z_{i}{-}\bar{Z}_{ar}(t)\right\} \hat{\pi }^{*}(t) \frac{\xi _{i}}{\pi ^{2}(W_{i},\alpha )}\dot{\pi }^{T}(W_{i},\alpha ) \left\{ dN_{i}(t){-}\rho (W_{i},\gamma )dN_{i}^{*}(t)\right\} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial U_{ar}(\beta _{0},\alpha ,\gamma )}{\partial \gamma ^{T}} =\frac{1}{n}\sum \limits _{i=1}^{n}\int \limits _{0}^{\tau }\left\{ Z_{i}{-}\bar{Z}_{ar}(t)\right\} \hat{\pi }^{*}(t) \left( 1-\frac{\xi _{i}}{\pi (W_{i},\alpha )}\right) \dot{\rho }^{T}(W_{i},\gamma )dN_{i}^{*}(t). \end{aligned}$$

By (A.1), \(\hat{\alpha } \xrightarrow {\mathrm {P}}\alpha _{*}\) and \(\hat{\gamma } \xrightarrow {\mathrm {P}}\gamma _{*}\), we have

(A.14)

and

(A.15)

where

$$\begin{aligned} V_{\alpha _{*}}^{*}=E\left[ \int \limits _{0}^{\tau }\left\{ Z-\bar{z}(t)\right\} \pi ^{*}(t) \frac{\dot{\pi }^{T}(W,\alpha _{*})}{\pi (W,\alpha _{*})} \left\{ dN(t)-\rho (W,\gamma _{*})dN^{*}(t)\right\} \right] \end{aligned}$$

and

$$\begin{aligned} V_{\gamma _{*}}^{*}=E\left[ \int _{0}^{\tau }\{Z-\bar{z}(t)\}\pi ^{*}(t) \frac{\xi -\pi (W,\alpha _{*})}{\pi (W,\alpha _{*})} \dot{\rho }^{T}(W,\gamma _{*})dN^{*}(t)\right] . \end{aligned}$$

Similar to (A.7), we have

$$\begin{aligned} n^{\frac{1}{2}}U_{ar}(\beta _{0},\alpha _{*},\gamma _{*})= n^{-\frac{1}{2}}\sum \limits _{i=1}^{n} \int \limits _{0}^{\tau }\pi ^{*}(t)\left\{ Z_{i}-\bar{z}(t)\right\} dM_{i}^{*}(t)+o_{p}(1),\qquad \end{aligned}$$
(A.16)

where

$$\begin{aligned}&dM_{i}^{*}(t)\\&\quad =\frac{\xi _{i}}{\pi (W_{i},\alpha _{*})}dN_{i}(t) +\left( 1-\frac{\xi _{i}}{\pi (W_{i},\alpha _{*})}\right) \rho (W_{i},\gamma _{*})dN_{i}^{*}(t)\\&\qquad -\,Y_{i}(t)\beta _{0}^{T}Z_{i}dt-Y_{i}(t)d\Lambda _{0}(t). \end{aligned}$$

Define

$$\begin{aligned} S_{\alpha _{*}}^{*}= & {} \frac{\xi -\pi (W,\alpha _{*})}{\pi (W,\alpha _{*})(1-\pi (W,\alpha _{*}))}\dot{\pi }(W,\alpha _{*}),\\ S_{\gamma _{*}}^{*}= & {} \frac{\xi (\delta -\rho (W,\gamma _{*}))}{\rho (W,\gamma _{*})(1-\rho (W,\gamma _{*}))} \dot{\rho }(W,\gamma _{*}),\\ I_{\alpha _{*}}^{*}= & {} E\Big [S_{\alpha _{*}}^{*}S_{\alpha _{*}}^{*T} -\frac{\xi -\pi (W,\alpha _{*})}{\pi (W,\alpha _{*})(1-\pi (W,\alpha _{*}))} \ddot{\pi }(W,\alpha _{*})\Big ], \end{aligned}$$

and

$$\begin{aligned} I_{\gamma _{*}}^{*}=E\Big [S_{\gamma _{*}}^{*}S_{\gamma _{*}}^{*T} -\frac{\xi (\delta -\rho (W,\gamma _{*}))}{\rho (W,\gamma _{*})(1-\rho (W,\gamma _{*}))} \ddot{\rho }(W,\gamma _{*})\Big ]. \end{aligned}$$

Then under Condition (C4) and (C5), we have

$$\begin{aligned} n^{\frac{1}{2}}(\hat{\alpha }-\alpha _{*})= n^{-\frac{1}{2}}\sum _{i=1}^{n}(I_{\alpha _{*}}^{*})^{-1}S_{\alpha _{_*},i}^{*}+o_{p}(1) \end{aligned}$$
(A.17)

and

$$\begin{aligned} n^{\frac{1}{2}}(\hat{\gamma }-\gamma _{*})= n^{-\frac{1}{2}}\sum _{i=1}^{n}(I_{\gamma _{*}}^{*})^{-1}S_{\gamma _{_*},i}^{*}+o_{p}(1), \end{aligned}$$
(A.18)

where \(S_{\alpha _{*},i}^{*}\) and \(S_{\gamma _{*},i}^{*}\) are obtained through replacing \(\xi , \delta \) and W by \(\xi _{i}, \delta _{i}\) and \(W_{i}\) in \(S_{\alpha _{*}}^{*}\) and \(S_{\gamma _{*}}^{*}\). By (A.9) to (A.18), we can finally conclude that

By the central limit theorem, the desired result is proved. \(\square \)

Proof of (7)

It is easy to see that

(A.19)

By (A.1) and Taylor expansion of \(I\) at \(\alpha _{0}\), we obtain

(A.20)

where \(f_{4}(t,z,\alpha _{0})\) is the limit of \(\hat{f}_{4}(t,z,\hat{\alpha })\). \(\square \)

Similar to the proof of Theorem 2.4 in Lin (2011), by (4), it can be proven that

(A.21)

By (A.21) and Taylor expansion, we have

(A.22)

where \(f_{1}(t,z,\alpha _{0})\) and \(f_{3}(t,z,\alpha _{0})\) are the limits of \(\hat{f}_{1}(t,z,\hat{\alpha })\) and \(\hat{f}_{3}(t,z,\hat{\alpha })\) respectively. It is easy to see that

(A.23)

From (A.19) to (A.23), we finally arrive at

$$\begin{aligned} \mathcal {F}(t,z)= & {} n^{-1/2}\sum \limits _{i=1}^{n}\frac{\xi _{i}\pi ^{*}(t)}{\pi (W_{i},\alpha _{0})} \int \limits _{0}^{t}\left[ I(Z_{i}\le z)-\frac{f_{1}(s,z,\alpha _{0})}{S_{sr}^{(0)}(s,\alpha _{0})} \right] dM_{i}(s)\nonumber \\&-\,n^{-1/2}\sum \limits _{i=1}^{n}\frac{\xi _{i}}{\pi (W_{i},\alpha _{0})} f_{2}^{T}(t,z,\alpha _{0})A^{-1} \int \limits _{0}^{\tau }\pi ^{*}(s)\{Z_{i}-\bar{z}_{sr}(s)\}dM_{i}(s)\nonumber \\&+\,n^{-1/2}\sum \limits _{i=1}^{n}\left[ f_{3}^{T}(t,z,\alpha _{0})+f_{2}^{T}(t,z,\alpha _{0})A^{-1}V_{\alpha } -f_{4}^{T}(t,z,\alpha _{0})\right] I_{\alpha _{_0}}^{-1}S_{\alpha _{_0},i}\nonumber \\&+ \,o_{p}(1), \end{aligned}$$
(A.24)

where \(f_{2}(t,z,\alpha _{0})\) is the limit of \(\hat{f}_{2}(t,z,\hat{\alpha })\). The finite dimensional convergence of \(\mathcal {F}(t,z)\) can be proven by the multivariate cental limit theorem. By the techniques in Lin (2011), it can be proven that \(\mathcal {F}(t,z)\) is tight. So \(\mathcal {F}(t,z)\) converges weakly to a zero-mean Gaussian process which can be approximately by (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Cai, J. Reweighted estimators for additive hazard model with censoring indicators missing at random. Lifetime Data Anal 24, 224–249 (2018). https://doi.org/10.1007/s10985-017-9398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-017-9398-z

Keywords

Mathematics Subject Classification

Navigation