Skip to main content
Log in

Regression analysis for bivariate gap time with missing first gap time data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chang SH, Wang MC (1999) Conditional regression analysis for recurrence time data. J Am Stat Assoc 94:1221–1230

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York

    MATH  Google Scholar 

  • Huang J (1996) Efficient estimation for the proportional hazards model with interval censoring. Ann Stat 24:540–568

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y, Louis TA (1998) Nonparametri estimation of the joint distribution of survival time and mark variables. Biometrika 85:785–798

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y (2000) Multistate accelerated sojourn time model. J Am Stat Assoc 95:619–627

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Liu L (2007) A joint fraility model for survival and gap times between recurrent events. Biometrics 63:389–397

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Ying Z (1997) Additive regression models for survival data Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis. Springer, New York

    Book  Google Scholar 

  • Lin DY, Sun W, Ying Z (1999) Nonparametric estimation of gap time distributions for serial events with censored data. Biometrika 86:59–70

    Article  MathSciNet  MATH  Google Scholar 

  • Schaubel DE, Cai J (2004) Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data. Biometrika 91:291–303

    Article  MathSciNet  MATH  Google Scholar 

  • Sun LQ, Park DH, Sun JG (2006) The additive hazards model for recurrent gap times. Stat Sin 16:919–932

    MathSciNet  MATH  Google Scholar 

  • Visser M (1996) Nonparametric estimation of the bivariate survival function with an application to vertically transmitted AIDS. Biometrika 83:507–518

    Article  MATH  Google Scholar 

  • Wang W, Wells M (1998) Nonparametric estimation of successive duration times under dependent censoring. Biometrika 85:561–572

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Ding AA (2000) On assessing the association for bivariate current status data. Biometrika 87:879–893

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MC, Qin J, Chiang CT (2001) Analyzing recurrent event data with informative censoring. J Am Stat Assoc 96:1057–1065

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MC, Chiang CT (2002) Nonparametric methods for recurrent event data with informative and non-informative censorings. Stat Med 21:445–456

    Article  Google Scholar 

  • Zeng D, Lin DY (2006) Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93:627–640

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Taiwan Ministry of Science and Techonology Grant 103-2118-M-305-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hui Huang.

Appendices

Appendix 1: Proof of Theorem 1

First we shall show that \(\frac{1}{\sqrt{n}} \sum _{i=1}^n\varvec{U}_i(\varvec{\varOmega })\) at \(\varvec{\varOmega }_0\) converges to a multivariate normal distribution, where

$$\begin{aligned} \varvec{U}_i (\varvec{\varOmega })= \varvec{S}_{1i}(\varvec{\varOmega }) + \int _0^\zeta \varvec{S}_{2i}(v,\varvec{\varOmega })\;dM_{2i}(v)+ \int _0^\zeta \varvec{S}_{Ci}(\varvec{\varOmega })\;dM_{Ci}(v). \end{aligned}$$

Note that \(\varvec{S}_{ki}, k=1,2,3\), have been defined in (8). By the multivariate central limit theorem, we have \(\frac{1}{\sqrt{n}} \sum _{i=1}^n\varvec{S}_{1i}(\varvec{\varOmega }_0) \rightarrow N\left( 0, E\left\{ -\frac{1}{n}\sum _{i=1}^n\frac{\partial \varvec{S}_{1i}(\varvec{\varOmega }_0)}{\partial \varvec{\varOmega }}\right\} \right) \). Since we assume that \(dN_{2i}, dN_{Ci}\) cannot jump simultaneously and two counting processes are conditionally independent to \(\delta _{1i}\) given \(Z_i\),

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum _{i=1}^n\varvec{S}_{1i}(\varvec{\varOmega }_0), \frac{1}{\sqrt{n}}\sum _{i=1}^n\int _0^\zeta \varvec{S}_{2i}(v, \varvec{\varOmega }_0)\;dM_{2i}(v), \text{ and } \\&\frac{1}{\sqrt{n}}\sum _{i=1}^n\int _0^\zeta \varvec{S}_{Ci}(\varvec{\varOmega }_0)\;dM_{Ci}(v), \end{aligned}$$

are asymptotically independent. Based on martingale central limit theorem and regular assumptations \(\text{(A1) }-\text{(A5) }\), we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^n\left\{ \varvec{S}_{1i}(\varvec{\varOmega }_0)+ \int _0^\zeta \varvec{S}_{2i}(v, \varvec{\varOmega }_0)\;dM_{2i}(v) + \varvec{S}_{Ci}(\varvec{\varOmega }_0)\;dM_{Ci}(v)\right\} \rightarrow N\left( 0, \;\mathscr {I}_0 \right) . \end{aligned}$$

Furthermore, the differential of \(-\frac{1}{n}\sum _{i=1}^n\varvec{U}_{i}(\varvec{\varOmega })\) with respect to \(\varvec{\varOmega }\) is

$$\begin{aligned}&-\frac{1}{n}\sum _{i=1}^n\frac{\partial \varvec{S}_{1i} (\varvec{\varOmega })}{\partial \varvec{\varOmega }}\nonumber \\&\quad +\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ Y_i(v)\tilde{\eta }_{2i}(v)\lambda _2\varvec{S}_{2i}(v, \varvec{\varOmega })^{\otimes 2} + Y_i(v)\tilde{\eta }_{Ci}(v)\lambda _C\varvec{S}_{Ci}(\varvec{\varOmega })^{\otimes 2} \right\} dv\nonumber \\&\quad - \frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{\partial \varvec{S}_{2i}(v, \varvec{\varOmega })}{\partial \varvec{\varOmega }} dM_{2i}(v) + \frac{\partial \varvec{S}_{Ci}(\varvec{\varOmega })}{\partial \varvec{\varOmega }} dM_{Ci}(v)\right\} . \end{aligned}$$
(9)

By \(\text{(A3) }\)\(\text{(A4) }\) we have the first two terms on the right-hand side of (9) converge to \(\mathscr {I}_0\), and the third term is \(o_p(1)\) because the sum is scaled by \(n^{-1}\). So with the Taylor expansion of \(\frac{1}{n}\sum _{i=1}^n\varvec{U}_{i}(\widehat{\varvec{\varOmega }})\) around \(\varvec{\varOmega }_0\), we have

$$\begin{aligned} \sqrt{n}\Big (\varvec{\widehat{\alpha }}-\varvec{\alpha }_0, \varvec{\widehat{\beta }}-\varvec{\beta }_0, \hat{\theta }-\theta _0 \Big )= \Big \{-\frac{1}{n}\sum _{i=1}^n\frac{\partial \varvec{U}_{i}(\varvec{\varOmega }^*)}{\partial \varvec{\varOmega }}\Big \}^{-1} \frac{1}{\sqrt{n}} \sum _{i=1}^n\varvec{U}_i(\varvec{\varOmega }_0), \end{aligned}$$

where \(\varvec{\varOmega }^{*}\) is on the line segment between \(\varvec{\widehat{\varOmega }}\) and \(\varvec{\varOmega }_0\). Therefore, by Slutsky’s theorem and \(\varvec{\widehat{\varOmega }}\rightarrow \varvec{\varOmega }_0\) almost surely, Theorem 1 is established.

Appendix 2: Information matrix

For \(s,l \in \{1,2,C\}\), the differential of \(-\frac{1}{n}\sum _{i=1}^n\varvec{U}_{i}(\varvec{\varOmega })\) for each parameter are given

$$\begin{aligned} I_{\alpha _s\alpha _l}= & {} (-1)^{I(s\ne l)} I(s\ne 2, l\ne 2)\frac{1}{n}\sum _{i=1}^n\left[ \frac{\exp (\alpha _1+ \beta _1'Z_i)\exp (\alpha _C+ \beta _C'Z_i)}{\left\{ \exp (\alpha _1+ \beta _1'Z_i)+\exp (\alpha _C+ \beta _C'Z_i)\right\} ^2}\right] \\&+\frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{2i}(v)\exp (\alpha _2)\left\{ \widetilde{X}_{si}(v)+I(s=2)\right\} \left\{ \widetilde{X}_{li}(v)+I(l=2)\right\} dv\\&+ \,\,I(s = l =C)\frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{Ci}(v)\exp (\alpha _C) dv\\&-\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{1}{\tilde{\eta }_{2i}(v)}\frac{\partial ^2\tilde{\eta }_{2i}(v)}{\partial \alpha _s\partial \alpha _l}-\widetilde{X}_{si}(v)\widetilde{X}_{li}(v)\right\} dM_{2i}(v),\\ I_{\alpha _s\beta _l}= & {} (-1)^{I(s\ne l)} I(s\ne 2, l\ne 2)\frac{1}{n}\sum _{i=1}^n\left[ \frac{\exp (\alpha _1+ \beta _1'Z_i)\exp (\alpha _C+ \beta _C'Z_i)}{\left\{ \exp (\alpha _1+ \beta _1'Z_i)+\exp (\alpha _C+ \beta _C'Z_i)\right\} ^2}\right] Z_i\\&+\frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{2i}(v)\exp (\alpha _2)\left\{ \widetilde{X}_{si}(v)+I(s=2)\right\} \widetilde{Z}_{li}(v)\;dv\\&+\,\, I(s = l =C)\frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{Ci}(v)\exp (\alpha _C)Z_i\; dv\\&-\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{1}{\tilde{\eta }_{2i}(v)}\frac{\partial ^2\tilde{\eta }_{2i}(v)}{\partial \alpha _s\partial \beta _l}-\widetilde{X}_{si}(v)\widetilde{Z}_{li}(v)\right\} dM_{2i}(v),\\ I_{\alpha _s\theta }= & {} \frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{2i}(v)\exp (\alpha _2)\left\{ \widetilde{X}_{si}(v)+I(s=2)\right\} \widetilde{W}'_{i}(v)\;dv \\&-\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{1}{\tilde{\eta }_{2i}(v)}\frac{\partial ^2\tilde{\eta }_{2i}(v)}{\partial \alpha _s\partial \theta }-\widetilde{X}_{si}(v)\widetilde{W}'_{i}(v)\right\} dM_{2i}(v),\\ I_{\beta _s\beta _l}= & {} (-1)^{I(s\ne l)} I(s\ne 2, l\ne 2)\frac{1}{n}\sum _{i=1}^n\left[ \frac{\exp (\alpha _1+ \beta _1'Z_i)\exp (\alpha _C+ \beta _C'Z_i)}{\left\{ \exp (\alpha _1+ \beta _1'Z_i)+\exp (\alpha _C+ \beta _C'Z_i)\right\} ^2}\right] Z_i^{\otimes 2}\\&+\frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{2i}(v)\exp (\alpha _2)\widetilde{Z}_{si}(v)\widetilde{Z}'_{li}(v)\;dv\\&+\,\, I(s = l =C)\frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{Ci}(v)\exp (\alpha _C)Z_i^{\otimes 2} dv\\&-\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{1}{\tilde{\eta }_{2i}(v)}\frac{\partial ^2\tilde{\eta }_{2i}(v)}{\partial \beta _s\partial \beta _l}-\widetilde{Z}_{si}(v)\widetilde{Z}'_{li}(v)\right\} dM_{2i}(v),\\ \end{aligned}$$
$$\begin{aligned} I_{\beta _s\theta }= & {} \frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{2i}(v)\exp (\alpha _2)\widetilde{Z}_{si}(v)\widetilde{W}'_{i}(v)\;dv\\&-\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{1}{\tilde{\eta }_{2i}(v)}\frac{\partial ^2\tilde{\eta }_{2i}(v)}{\partial \beta _s\partial \theta }-\widetilde{Z}_{si}(v)\widetilde{W}'_{i}(v)\right\} dM_{2i}(v),\\ I_{\theta \theta }= & {} \frac{1}{n}\sum _{i=1}^n\int _0^\zeta Y_{i}(v)\tilde{\eta }_{2i}(v)\exp (\alpha _2)\widetilde{W}^2_{i}(v)dv\\&-\frac{1}{n}\sum _{i=1}^n\int _0^\zeta \left\{ \frac{1}{\tilde{\eta }_{2i}(v)}\frac{\partial ^2\tilde{\eta }_{2i}(v)}{\partial ^2 \theta }-\widetilde{W}_{i}^2(v)\right\} dM_{2i}(v),\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CH., Chen, YH. Regression analysis for bivariate gap time with missing first gap time data. Lifetime Data Anal 23, 83–101 (2017). https://doi.org/10.1007/s10985-016-9370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-016-9370-3

Keywords

Navigation