Skip to main content

Advertisement

Log in

A Bayesian adaptive design for two-stage clinical trials with survival data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

A randomized two-stage adaptive Bayesian design is proposed and studied for allocation and comparison in a phase III clinical trial with survival time as treatment response. Several exact and limiting properties of the design and the follow-up inference are studied, both numerically and theoretically, and are compared with a single-stage randomized procedure. The applicability of the proposed methodology is illustrated by using some real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdushukorov AA (1984) On some estimates of the distribution function under random censorship. In: Conference of young scientists. Math Inst Acad Sci. Urbek. SSR. Taschkent. VINTI No 8756 (in Russian)

  • Anderson PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Google Scholar 

  • Atkinson AC (1982) Optimal biased coin design for sequential clinical trials with prognostic factors. Biometrika 69: 61–67

    Article  MATH  MathSciNet  Google Scholar 

  • Atkinson AC, Biswas A (2005) Bayesian adaptive biased coin design for sequential clinical trials. Biometrics 61: 118–125

    Article  MATH  MathSciNet  Google Scholar 

  • Atkinson AC, Donev AN (1996) Optimum experimental designs. Oxford University Press, Oxford

    Google Scholar 

  • Ball FG, Smith AFM, Verdinelli I (1993) Biased coin designs with a Bayesian bias. J Stat Plan Inference 34: 403–421

    Article  MATH  MathSciNet  Google Scholar 

  • Bandyopadhyay U, Biswas A (2001) Adaptive designs for normal responses with prognostic factors. Biometrika 88: 409–419

    Article  MATH  MathSciNet  Google Scholar 

  • Bandyopadhyay U, Biswas A, Bhattacharya R (2007) Covariate adjusted two stage allocation design for binary responses in randomized clinical trials. Stat Med 26: 4386–4399

    Article  MathSciNet  Google Scholar 

  • Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB (1985) Extracorporeal circulation in neonatal respiratory failure: a prospective randomized trial. Pediatrics 76: 479–487

    Google Scholar 

  • Bauer M, Bauer P, Buddle M (1994) A simulation program for adaptive two stage designs. Comput Stat Data Anal 26: 351–371

    Article  Google Scholar 

  • Bauer P, Brannath W, Posch M (2001) Flexible two-stage designs: an overview. Methods Inf Med 40: 117–121

    Google Scholar 

  • Biswas A, Dewanji A (2004) A randomized longitudinal play-the-winner design for repeated binary data. Aust N Z J Stat 46: 675–684

    Article  MATH  MathSciNet  Google Scholar 

  • Braekers R, Veraverbeke N (2001) The partial Kojiol-Green model with covariates. J Stat Plan Inference 92: 55–71

    Article  MATH  MathSciNet  Google Scholar 

  • Chen CH (1984) A correlation goodness-of-fit test for randomly censored data. Biometrika 71: 315–322

    Article  MATH  MathSciNet  Google Scholar 

  • Chen YY, Hollander M, Langberg NA (1982) Small-sample results for the Kaplan–Meier estimator. J Am Stat Assoc 77: 141–144

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng CH, Lin GD (1987) Maximum likelihood estimation of a survival function under the Koziol–Green proportional hazards model. Stat Probab Lett 5: 75–80

    Article  MATH  MathSciNet  Google Scholar 

  • Cheung YK, Thall PF (2002) Monitoring the rates of composite events with censored data in phase I clinical trials. Biometrics 58: 89–97

    Article  MathSciNet  Google Scholar 

  • Coad DS (1992) Some results on estimation for two stage clinical trials. Sequential Anal 11: 299–311

    Article  MATH  MathSciNet  Google Scholar 

  • Coad DS (1994) Sequential estimation for two-stage and three-stage clinical trials. J Stat Plan Inference 43: 343–351

    Article  MathSciNet  Google Scholar 

  • Cox DR (1959) The analysis of exponentially distributed life-times with two types of failure. J R Stat Soc B 21: 411–421

    MATH  Google Scholar 

  • Csorgo S (1989) Testing the proportional hazards model of random censorship. In: Mandl P, Huskova M (eds) Proceedings of the fourth prague symposium on asymptotic statistics. Charles University Press, Prague, pp 41–53

    Google Scholar 

  • Csorgo S, Horvath L (1981) On the Koziol–Green model for random censorship. Biometrika 68: 391–401

    MathSciNet  Google Scholar 

  • Dauxois J-Y, Kirmani SNUA (2003) On testing the proportionality of two cumulative incidence functions in a competing risks setup. Nonparametr Stat 16: 479–491

    Article  MathSciNet  Google Scholar 

  • de Una-Alvarez J, Gonzalez-Manteiga W (1998) Distributional convergence under proportional censorship when covariates are present. Stat Prob Lett 39: 305–315

    Article  MATH  Google Scholar 

  • de Una-Alvarez J, Gonzalez-Manteiga W (1999) Strong consistency under proportional censorship when covariates are present. Stat Prob Lett 42: 283–292

    Article  MATH  Google Scholar 

  • Durham S, Flournoy N, Li W (1998) A sequential design for maximising the probability of a favourable response. Can J Stat 26: 479–495

    Article  MATH  MathSciNet  Google Scholar 

  • Ebrahimi N (1985) Nonparametric estimation of survival functions for incomplete observations when the life time distribution is proportionally related to the censoring time distribution. Commun Stat Theory Methods 14: 2887–2898

    Article  MATH  MathSciNet  Google Scholar 

  • Ebrahimi N, Habibullah M (1992) Testing to determine the underlying distribution using incomplete observations when the life time distribution is proportionally related to the censoring time distribution. J Stat Comput Simul 40: 109–118

    Article  MATH  Google Scholar 

  • Feigl P, Zelen M (1965) Estimation of exponential survival probabilities with concomitant information. Biometrics 21: 826–838

    Article  Google Scholar 

  • Flehinger B, Louis T. (1971) A sequential treatment allocation in clinical trials. Biometrika 58: 419–426

    Article  MathSciNet  Google Scholar 

  • Freireich EJ et al (1963) The effect of 6-Mercaptopurine on the duration of steroid induced remission in ‘Acute Leukemia’. Blood 21: 699–716

    Google Scholar 

  • Gather U, Pawlitschko J (1999) Estimating the survival function under a generalized Koziol–Green model with partially informative censoring. Metrika 48: 189–207

    MathSciNet  Google Scholar 

  • Ghorai JK (1991) Estimation of a smooth quantile function under the proportional hazards model. Ann Inst Stat Math 43: 747–760

    Article  MATH  MathSciNet  Google Scholar 

  • Gijbels I, Veraverbeke N (1989) Quantile estimation in the proportion hazards model of random censorship. Commun Stat Theory Methods 18: 1645–1663

    Article  MATH  MathSciNet  Google Scholar 

  • Gross AJ, Clark VA (1975) Survival distributions: reliability applications in the biomedical sciences. Wiley, New York

    MATH  Google Scholar 

  • Hajek J, Sidak Z (1967) Theory of rank tests. Academic Press, New York

    MATH  Google Scholar 

  • Hallstrom A, Brooks MM, Peckovia M (1996) Logrank, play the winner, power and ethics. Stat Med 15: 2135–2142

    Article  Google Scholar 

  • Henze N (1993) A quick omnibus test for the proportional hazards model of random censorship. Statistics 24: 253–263

    Article  MATH  MathSciNet  Google Scholar 

  • Herbst T (1992) Test of fit with the Koziol–Green model for random censorship. Stat Decis 10: 163–171

    MATH  MathSciNet  Google Scholar 

  • Hollander M, Proschan F (1979) Testing to determine the underlying distribution using randomly censored data. Biometrics 35: 393–401

    Article  MATH  MathSciNet  Google Scholar 

  • Hsieh FY (1992) Comparing sample size formulas for trials with unbalanced allocation using the logrank test. Stat Med 11: 1091–1098

    Article  Google Scholar 

  • Iglewicz B (1983) Alternative designs: sequential, multi-stage, decision theory and adaptive designs. In: Buyse ME, Staquet J, Sylvester RJ (eds) Cancer clinical trials: methods and practice. Oxford University Press, Oxford, pp 312–324

    Google Scholar 

  • Ivanova A (2003) A play-the-winner-type urn design with reduced variability. Metrika 58: 1–13

    MATH  MathSciNet  Google Scholar 

  • Koziol JA, Green SB (1976) A Cramer-von Mises statistic for randomly censored data. Biometrika 63: 465–474

    MATH  MathSciNet  Google Scholar 

  • Lawless JF (1976) Confidence interval estimation in the inverse power law model. Appl Stat 25: 128–138

    Article  MathSciNet  Google Scholar 

  • Lawrence J (2002) Strategies for changing the test statistic during a clinical trial. J Biopharm Stat 12: 193–205

    Article  MathSciNet  Google Scholar 

  • Liu Q, Chi GY (2001) On sample size and inference for two-stage adaptive designs. Biometrics 57: 172–177

    Article  MathSciNet  Google Scholar 

  • Liu Q, Proschan MA, Pledger GW (2002) A unified theory of two-stage adaptive designs. J Am Stat Assoc 97: 1034–1041

    Article  MATH  MathSciNet  Google Scholar 

  • Matthews JNS (2000) An introduction to randomized controlled clinical trials. Edward Arnold, London

    MATH  Google Scholar 

  • Muller H, Schafer H (2001) Adaptive group sequential designs for clinical trials: combining the advantages of adaptive and of classical group sequential approaches. Biometrics 57: 886–891

    Article  MathSciNet  Google Scholar 

  • Pawlitschko J (1999) A comparison of survival function estimators in the Koziol–Green model. Statistics 32: 277–291

    Article  MATH  MathSciNet  Google Scholar 

  • Posch M, Bauer P (1999) Adaptive two stage designs and the conditional error function. Biometrical J 41: 689–696

    Article  MATH  Google Scholar 

  • Prentice RL (1973) Exponential survival with censoring and explanatory variables. Biometrika 61: 539–544

    Article  MathSciNet  Google Scholar 

  • Proschan MA, Hunsberger SA (1995) Designed extension of studies based on conditional power. Biometrics 51: 1315–1324

    Article  MATH  Google Scholar 

  • Proschan MA, Liu Q, Hunsberger S (2003) Practical midcourse sample size modification in clinical trials. Control Clin Trials 24: 4–15

    Article  Google Scholar 

  • Rosenberger WF (2003) Adaptive survival trials. In: Chow S-C (eds) Encyclopedia of biopharmaceutical statistics, 2nd edn. Dekkar, New York, pp 16–17

    Google Scholar 

  • Rosenberger WF, Lachin JL (2002) Randomization in clinical trials: theory and practice. Wiley, New York

    Book  MATH  Google Scholar 

  • Rosenberger WF, Seshaiyer P (1997) Adaptive survival trials. J Biopharm Stat 7: 617–624

    Article  Google Scholar 

  • Rout CC, Rocke DA, Levin J, Gouws E, Reddy D (1993) A reevaluation of the role of crystalloid preload in the prevention of hypotension associated with spinal anesthesia for elective cesarean section. Anesthesiology 79: 768–776

    Article  Google Scholar 

  • Sposto R, Krailo MD (1987) Use of unequal allocation in survival trials. Stat Med 7: 629–637

    Google Scholar 

  • Stute W (1992) Strong consistency under the Koziol–Green model. Stat Probab Lett 14: 313–320

    Article  MATH  MathSciNet  Google Scholar 

  • Subramanian S (2000) Efficient estimation of regression coefficients and baseline hazard under proportionality of conditional hazard. J Stat Plan Infer 84: 81–94

    Article  MATH  MathSciNet  Google Scholar 

  • Tamura RN, Faries DE, Andersen JS, Heiligenstein JH (1994) A case study of an adaptive clinical trials in the treatment of out-patients with depressive disorder. J Am Stat Assoc 89: 768–776

    Article  Google Scholar 

  • The Trials of Hypertension Prevention Collaborative Research Group (1992) The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. J Am Med Assoc 267:1213–1220

    Google Scholar 

  • Veraverbeke N, Cadarso-Suarez C (2000) Estimation of the conditional distribution in a conditional Koziol–Green model. Test 9: 97–122

    Article  MATH  MathSciNet  Google Scholar 

  • Ware JH (1989) Investigating therapies of potentially great benefit: ECMO. Stat Sci 4: 298–340

    Article  MATH  MathSciNet  Google Scholar 

  • Wei LJ, Durham S (1978) The randomized play-the-winner rule in medical trials. J Am Stat Assoc 73: 838–843

    Google Scholar 

  • Yao Q, Wei LJ (1996) Play the winner for phase II and III clinical trials. Stat Med 15: 2413–2423

    Article  Google Scholar 

  • Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, Linssen G, Tebbe U, Schroder R, Tiemann R, Machnig T, Neuhaus K-L, forthe ESCAMI Investigators (2001a) The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infraction. J Am Coll Cardiol 38: 1644–1651

    Article  Google Scholar 

  • Zeymer U, Suryapranata H et al (2001b) Evaluation of the safety and cardioprotective effects of eniporide, a specific Sodium/Hydrogen exchange inhibitor, given as adjunctive therapy to reperfusion in patients with acute myocardial infraction. Heart Drug 1: 71–76

    Article  Google Scholar 

  • Zelen M (1959) Factorial experiments in life testing. Technometrics 1: 269–288

    Article  MathSciNet  Google Scholar 

  • Zelen M (1969) Play-the-winner rule and controlled clinical trial. J Am Stat Assoc 64: 131–146

    Article  MathSciNet  Google Scholar 

  • Zhang L, Rosenberger WF (2007) Response-adaptive randomization for survival trials: the parametric approach. J R Stat Soc Ser C 34: 562–569

    Google Scholar 

  • Zheng G, Gastwirth JL (2001) On the Fisher information in randomly censored data. Stat Probab Lett 52: 421–426

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng G, Gastwirth JL (2003) Fisher information in ordered randomly censored data with applications to characterization problems. Stat Sin 13: 507–517

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, U., Biswas, A. & Bhattacharya, R. A Bayesian adaptive design for two-stage clinical trials with survival data. Lifetime Data Anal 15, 468–492 (2009). https://doi.org/10.1007/s10985-009-9134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-009-9134-4

Keywords

Navigation