Skip to main content

Novel Bayesian Adaptive Designs and Their Applications in Cancer Clinical Trials

  • Chapter
  • First Online:
Computational and Methodological Statistics and Biostatistics

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

Clinical trial is a prescribed learning process for identifying safe and effective treatments. In recent years, rapid advancements in cancer biology, immunology, genomics, and treatment development have demanded innovative methods to identify better therapies for the most appropriate population in a timely, efficient, accurate, and cost-effective way. In this chapter, we will first illustrate the concept of Bayesian update and Bayesian inference, which is a superior alternative to the traditional frequentist approach. Bayesian methods take the "learn as we go" approach, making them innately suitable for clinical trials. Then, we will give an overview of Bayesian adaptive designs in the areas of adaptive dose finding, posterior probability and predictive probability calculation, outcome adaptive randomization, multi-endpoint phase II design, multi-arm, multi-stage platform design, hierarchical modeling, etc. In particular, a new class of model-assisted designs will be introduced, which combine the transparency and simplicity of conventional algorithm-based designs with the superiority and rigorousness of model-based designs. These designs enjoy superior performance comparable to more complicated, model-based designs, though they are also capable of simplicity similar to conventional designs. Examples of the Bayesian optimal interval (BOIN), the keyboard, the time-to-event BOIN (TITE-BOIN), the BOIN combination, and the Bayesian Optimal Phase 2 (BOP2) designs will be discussed. Real applications, including BATTLE trial in lung cancer, I-SPY 2 trial in breast cancer, and GBM AGILE in glioblastoma, will be given. The chapter will also introduce software tools, including downloadable programs and online Shiny applications for the design and conduct of clinical trials. Bayesian adaptive clinical trial designs increase study efficiency, allow more flexible trial conduct, and treat a greater number of patients with more effective treatments in the trial. They also possess desirable frequentist properties. Useful software tools can be found at: https://biostatistics.mdanderson.org/SoftwareDownload/and https://trialdesign.org/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, B. M., Ba, S., Berger, M. S., Berry, D. A., Cavenee, W. K., Chang, S. M., et al. (2018). Adaptive global innovative learning environment for Glioblastoma: GBM AGILE. Clinical Cancer Research, 24(4), 737–743.

    Google Scholar 

  • Avorn, J. (2015). The $2.6 billion pill - methodologic and policy considerations. New England Journal of Medicine, 372(20), 1877–1879.

    Google Scholar 

  • Barker, A. D., Sigman, C. C., Kelloff, G. J., Hylton, N. M., Berry, D. A., & Esserman, L. J. (2009). I-SPY 2: An adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clinical Pharmacology & Therapeutics, 86(1), 97–100.

    Google Scholar 

  • Berger, Z. (2010). Bayesian and frequentist models: Legitimate choices for different purposes of clinical research. Journal of Evaluation in Clinical Practice, 16(6), 1045–1047.

    Google Scholar 

  • Berry, D. A. (2006). Bayesian clinical trials. Nature Reviews Drug Discovery, 5(1), 27–36.

    Google Scholar 

  • Berry, D. A. (2015). The Brave New World of clinical cancer research: Adaptive biomarker-driven trials integrating clinical practice with clinical research. Molecular Oncology, 9(5), 951–959.

    Google Scholar 

  • Bhatt, A. (2010). Evolution of clinical research: A history before and beyond james lind. Perspectives in Clinical Research, 1(1), 6–10.

    Google Scholar 

  • Biswas, S., Liu, D. D., Lee, J. J., & Berry, D. A. (2009). Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center. Clinical Trials, 6(3), 205–216.

    Google Scholar 

  • Braun, T. M., & Wang, S. (2010). A hierarchical Bayesian design for phase I trials of novel combinations of cancer therapeutic agents. Biometrics, 66(3), 805–812.

    MathSciNet  MATH  Google Scholar 

  • Carey, L. A., & Winer, E. P. (2016). I-SPY 2--toward more rapid progress in breast cancer treatment. The New England Journal of Medicine, 375(1), 83–84.

    Google Scholar 

  • Cheung, Y. K., & Chappell, R. (2000). Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics, 56(4), 1177–1182.

    MathSciNet  MATH  Google Scholar 

  • Chevret, S. (2012). Bayesian adaptive clinical trials: A dream for statisticians only? Statistics in Medicine, 31(11–12), 1002–1013.

    MathSciNet  Google Scholar 

  • Chow, S. C., & Chang, M. (2008). Adaptive design methods in clinical trials - a review. Orphanet Journal of Rare Diseases, 3, 11.

    Google Scholar 

  • DiMasi, J. A., Reichert, J. M., Feldman, L., & Malins, A. (2013). Clinical approval success rates for investigational cancer drugs. Clinical Pharmacology & Therapeutics, 94(3), 329–335.

    Google Scholar 

  • Friedman, L. M., Furberg, C., & DeMets, D. L. (2010). Fundamentals of clinical trials (4th ed.). New York: Springer.

    MATH  Google Scholar 

  • Goodman, S. N., Zahurak, M. L., & Piantadosi, S. (1995). Some practical improvements in the continual reassessment method for phase-I studies. Statistics in Medicine, 14(11), 1149–1161.

    Google Scholar 

  • Gu, X., Chen, N., Wei, C., Liu, S., Papadimitrakopoulou, V. A., Herbst, R. S., et al. (2016). Bayesian two-stage biomarker-based adaptive design for targeted therapy development. Statistics in Biosciences, 8(1), 99–128.

    Google Scholar 

  • Guo, W., Wang, S.-J., Yang, S., Lynn, H., & Ji, Y. (2017). A Bayesian interval dose-finding design addressing Ockham’s razor: mTPI-2. Contemporary Clinical Trials, 58, 23–33.

    Google Scholar 

  • Heitjan, D. F. (1997). Bayesian interim analysis of phase II cancer clinical trials. Statistics in Medicine, 16(16), 1791–1802.

    MathSciNet  Google Scholar 

  • Hobbs, B. P., Chen, N., & Lee, J. J. (2018). Controlled multi-arm platform design using predictive probability. Statistical Methods in Medical Research, 27(1), 65–78.

    MathSciNet  Google Scholar 

  • Howard, D. R., Brown, J. M., Todd, S., & Gregory, W. M. (2018). Recommendations on multiple testing adjustment in multi-arm trials with a shared control group. Statistical Methods in Medical Research, 27(5), 1513–1530.

    MathSciNet  Google Scholar 

  • Hu, F., & Rosenberger, W. F. (2006). The theory of response-adaptive randomization in clinical trials (Vol. 525). Hoboken: John Wiley & Sons.

    MATH  Google Scholar 

  • Iasonos, A., Wages, N. A., Conaway, M. R., Cheung, K., Yuan, Y., & O’Quigley, J. (2016). Dimension of model parameter space and operating characteristics in adaptive dose-finding studies. Statistics in Medicine, 35(21), 3760–3775.

    MathSciNet  Google Scholar 

  • Ji, Y., Liu, P., Li, Y., & Bekele, B. N. (2010). A modified toxicity probability interval method for dose-finding trials. Clinical Trials, 7(6), 653–663.

    Google Scholar 

  • Kim, E. S., Herbst, R. S., Wistuba, I. I., Lee, J. J., Blumenschein, G. R., Tsao, A., et al. (2011). The BATTLE trial: Personalizing therapy for lung cancer. Cancer Discovery, 1(1), 44–53.

    Google Scholar 

  • Lee, J. J., & Berry, D. A. (2016). Statistical innovations in cancer research. Holland-Frei Cancer Medicine, 6, 1–18.

    Google Scholar 

  • Lee, J. J., & Chu, C. T. (2012). Bayesian clinical trials in action. Statistics in Medicine, 31(25), 2955–2972.

    MathSciNet  Google Scholar 

  • Lee, J. J., & Liu, D. D. (2008). A predictive probability design for phase II cancer clinical trials. Clinical Trials, 5(2), 93–106.

    Google Scholar 

  • Lee, K. M., Wason, J., & Stallard, N. (2019). To add or not to add a new treatment arm to a multiarm study: A decision-theoretic framework. Statistics in Medicine, 32, 3305–3321.

    MathSciNet  Google Scholar 

  • Lin, R. (2018). Bayesian optimal interval design with multiple toxicity constraints. Biometrics, 74(4), 1320–1330.

    MathSciNet  Google Scholar 

  • Lin, R., Coleman, R. L., & Yuan, Y. (2019). Top: Time-to-event bayesian optimal phase ii trial design for cancer immunotherapy. Journal of the National Cancer Institute, 112(1), 38–45.

    Google Scholar 

  • Lin, R., & Yin, G. (2016). Bootstrap aggregating continual reassessment method for dose finding in drug-combination trials. Annals of Applied Statistics, 10(4), 2349–2376.

    MathSciNet  MATH  Google Scholar 

  • Lin, R., & Yin, G. (2017a). Bayesian optimal interval design for dose finding in drug-combination trials. Statistical Methods in Medical Research, 26(5), 2155–2167.

    MathSciNet  Google Scholar 

  • Lin, R., & Yin, G. (2017b). STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials. Statistics in Medicine, 36(26), 4106–4120.

    MathSciNet  Google Scholar 

  • Lin, R., & Yin, G. (2018). Uniformly most powerful Bayesian interval design for phase I dose-finding trials. Pharmaceutical Statistics, 17(6), 710–724.

    Google Scholar 

  • Lin, R., & Yuan, Y. (2019). On the relative efficiency of model-assisted designs: A conditional approach. Journal of Biopharmaceutical Statistics, 29, 648–662.

    Google Scholar 

  • Liu, S., & Lee, J. J. (2015). An overview of the design and conduct of the BATTLE trials. Chinese Clinical Oncology, 4(3), 33.

    Google Scholar 

  • Liu, S. Y., & Johnson, V. E. (2016). A robust Bayesian dose-finding design for phase I/II clinical trials. Biostatistics, 17(2), 249–263.

    MathSciNet  Google Scholar 

  • Liu, S. Y., & Yuan, Y. (2015). Bayesian optimal interval designs for phase I clinical trials. Journal of the Royal Statistical Society Series C-Applied Statistics, 64(3), 507–523.

    MathSciNet  Google Scholar 

  • Mahajan, R., & Gupta, K. (2010). Adaptive design clinical trials: Methodology, challenges and prospect. Indian Journal of Pharmacology, 42(4), 201–207.

    Google Scholar 

  • Nass, S. J., Rothenberg, M. L., Pentz, R., Hricak, H., Abernethy, A., Anderson, K., et al. (2018). Accelerating anticancer drug development - opportunities and trade-offs. Nature Reviews Clinical Oncology, 15(12), 777–786.

    Google Scholar 

  • Neuenschwander, B., Branson, M., & Gsponer, T. (2008). Critical aspects of the Bayesian approach to phase I cancer trials. Statistics in Medicine, 27(13), 2420–2439.

    MathSciNet  Google Scholar 

  • O’Quigley, J., Pepe, M., & Fisher, L. (1990). Continual reassessment method: A practical design for phase 1 clinical trials in cancer. Biometrics, 46(1), 33–48.

    MathSciNet  MATH  Google Scholar 

  • Papadimitrakopoulou, V., Lee, J. J., Wistuba, I. I., Tsao, A. S., Fossella, F. V., Kalhor, N., et al. (2016). The BATTLE-2 study: A biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 34(30), 3638–3647.

    Google Scholar 

  • Park, J. W., Liu, M. C., Yee, D., Yau, C., van’t Veer, L. J., Symmans, W. F., et al. (2016). Adaptive randomization of Neratinib in Early Breast Cancer. The New England Journal of Medicine, 375(1), 11–22.

    Google Scholar 

  • Piantadosi, S. (2017). Clinical trials: A methodologic perspective (3rd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  • Proschan, M. A., & Hunsberger, S. A. (1995). Designed extension of studies based on conditional power. Biometrics, 51(4), 1315–1324.

    MATH  Google Scholar 

  • Riviere, M. K., Dubois, F., & Zohar, S. (2015). Competing designs for drug combination in phase I dose-finding clinical trials. Statistics in Medicine, 34(1), 1–12.

    MathSciNet  Google Scholar 

  • Rogatko, A., Schoeneck, D., Jonas, W., Tighiouart, M., Khuri, F. R., & Porter, A. (2007). Translation of innovative designs into phase I trials. Journal of Clinical Oncology, 25(31), 4982–4986.

    Google Scholar 

  • Rosenberger, W. F. (1999). Randomized play-the-winner clinical trials: Review and recommendations. Controlled Clinical Trials, 20(4), 328–342.

    Google Scholar 

  • Rosenberger, W. F., Stallard, N., Ivanova, A., Harper, C. N., & Ricks, M. L. (2001). Optimal adaptive designs for binary response trials. Biometrics, 57(3), 909–913.

    MathSciNet  MATH  Google Scholar 

  • Rugo, H. S., Olopade, O. I., DeMichele, A., Yau, C., van’t Veer, L. J., Buxton, M. B., et al. (2016). Adaptive randomization of veliparib-carboplatin treatment in breast cancer. The New England Journal of Medicine, 375(1), 23–34.

    Google Scholar 

  • Saville, B. R., & Berry, S. M. (2016). Efficiencies of platform clinical trials: A vision of the future. Clinical Trials, 13(3), 358–366.

    Google Scholar 

  • Simon, N., & Simon, R. (2017). Using Bayesian modeling in frequentist adaptive enrichment designs. Biostatistics, 19(1), 27–41.

    MathSciNet  Google Scholar 

  • Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials, 10(1), 1–10.

    Google Scholar 

  • Skolnik, J. M., Barrett, J. S., Jayaraman, B., Patel, D., & Adamson, P. C. (2008). Shortening the timeline of pediatric phase I trials: The rolling six design. Journal of Clinical Oncology, 26(2), 190–195.

    Google Scholar 

  • Takeda, K., Taguri, M., & Morita, S. (2018). BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes. Pharmaceutical Statistics, 17(4), 383–395.

    Google Scholar 

  • Thall, P. F., & Cook, J. D. (2004). Dose-finding based on efficacy-toxicity trade-offs. Biometrics, 60(3), 684–693.

    MathSciNet  MATH  Google Scholar 

  • Thall, P. F., Millikan, R. E., Mueller, P., & Lee, S. J. (2003). Dose-finding with two agents in Phase I oncology trials. Biometrics, 59(3), 487–496.

    MathSciNet  MATH  Google Scholar 

  • Thall, P. F., & Simon, R. (1994). Practical Bayesian guidelines for phase IIB clinical trials. Biometrics, 50(2), 337–349.

    MathSciNet  MATH  Google Scholar 

  • Thall, P. F., Simon, R. M., & Estey, E. H. (1995). Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. Statistics in Medicine, 14(4), 357–379.

    Google Scholar 

  • Thall, P. F., & Wathen, J. K. (2007). Practical Bayesian adaptive randomisation in clinical trials. European Journal of Cancer, 43(5), 859–866.

    Google Scholar 

  • Thall, P. F., Wathen, J. K., Bekele, B. N., Champlin, R. E., Baker, L. H., & Benjamin, R. S. (2003). Hierarchical Bayesian approaches to phase II trials in diseases with multiple subtypes. Statistics in Medicine, 22(5), 763–780.

    Google Scholar 

  • Tidwell, R. S. S., Peng, A., Chen, M., Liu, D., Yuan, Y., & Lee, J. J. (2019). Bayesian clinical trials at the University of Texas MD Anderson Cancer Center: An update. Clinical Trials, 16(6), 645–656.

    Google Scholar 

  • Ventz, S., Barry, W. T., Parmigiani, G., & Trippa, L. (2017). Bayesian response-adaptive designs for basket trials. Biometrics, 73(3), 905–915.

    MathSciNet  Google Scholar 

  • Wason, J., Magirr, D., Law, M., & Jaki, T. (2016). Some recommendations for multi-arm multi-stage trials. Statistical Methods in Medical Research, 25(2), 716–727.

    MathSciNet  Google Scholar 

  • Wason, J. M., & Jaki, T. (2012). Optimal design of multi-arm multi-stage trials. Statistics in Medicine, 31(30), 4269–4279.

    MathSciNet  Google Scholar 

  • Wathen, J. K., & Thall, P. F. (2017). A simulation study of outcome adaptive randomization in multi-arm clinical trials. Clinical Trials, 14(5), 432–440.

    Google Scholar 

  • Yan, F., Mandrekar, S. J., & Yuan, Y. (2017). Keyboard: a novel Bayesian toxicity probability interval design for phase i clinical trials. Clinical Cancer Research, 23(15), 3994–4003.

    Google Scholar 

  • Yin, G., Chen, N., & Lee, J. J. (2012). Phase II trial design with Bayesian adaptive randomization and predictive probability. Journal of the Royal Statistical Society. Series C, Applied Statistics, 61(2), 219–235.

    MathSciNet  Google Scholar 

  • Yin, G., Chen, N., & Lee, J. J. (2018). Bayesian adaptive randomization and trial monitoring with predictive probability for time-to-event endpoint. Statistics in Biosciences, 10(2), 420–438.

    Google Scholar 

  • Yin, G., & Lin, R. (2015). Comments on ‘competing designs for drug combination in phase I dose-finding clinical trials’ by M-K. Riviere, F. Dubois, and S. Zohar. Statistics in Medicine, 34(1), 13–17.

    MathSciNet  Google Scholar 

  • Yin, G. S., & Yuan, Y. (2009a). Bayesian dose finding in oncology for drug combinations by copula regression. Journal of the Royal Statistical Society Series C-Applied Statistics, 58, 211–224.

    MathSciNet  Google Scholar 

  • Yin, G. S., & Yuan, Y. (2009b). Bayesian model averaging continual reassessment method in Phase I clinical trials. Journal of the American Statistical Association, 104(487), 954–968.

    MathSciNet  MATH  Google Scholar 

  • Yuan, Y., Lee, J. J., & Hilsenbeck, S. G. (2019). Model-assisted designs for early phase clinical trials: Simplicity meets superiority. JCO Precision Oncology, 3, 1–12.

    Google Scholar 

  • Yuan, Y., Lin, R., Li, D., Nie, L., & Warren, K. E. (2018). Time-to-event Bayesian optimal interval design to accelerate Phase I trials. Clinical Cancer Research, 24(20), 4921–4930.

    Google Scholar 

  • Yuan, Y., Nguyen, H. Q., & Thall, P. F. (2017). Bayesian designs for phase I-II clinical trials. Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Zang, Y., & Lee, J. J. (2014). Adaptive clinical trial designs in oncology. Chinese Clinical Oncology, 3(4), 49.

    Google Scholar 

  • Zang, Y., & Lee, J. J. (2017). A robust two-stage design identifying the optimal biological dose for phase I/II clinical trials. Statistics in Medicine, 36(1), 27–42.

    MathSciNet  Google Scholar 

  • Zang, Y., Lee, J. J., & Yuan, Y. (2014). Adaptive designs for identifying optimal biological dose for molecularly targeted agents. Clinical Trials, 11(3), 319–327.

    Google Scholar 

  • Zhang, L. C., & Yuan, Y. (2016). A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials. Statistics in Medicine, 35(27), 4924–4936.

    MathSciNet  Google Scholar 

  • Zhang, Y., Trippa, L., & Parmigiani, G. (2019). Frequentist operating characteristics of Bayesian optimal designs via simulation. Statistics in Medicine, 38(21), 4026–4039.

    MathSciNet  Google Scholar 

  • Zhou, H., Lee, J. J., & Yuan, Y. (2017). BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints. Statistics in Medicine, 36(21), 3302–3314.

    MathSciNet  Google Scholar 

  • Zhou, H., Murray, T. A., Pan, H., & Yuan, Y. (2018a). Comparative review of novel model-assisted designs for phase I clinical trials. Statistics in Medicine, 37(14), 2208–2222.

    MathSciNet  Google Scholar 

  • Zhou, H., Yuan, Y., & Nie, L. (2018b). Accuracy, safety, and reliability of novel Phase I trial designs. Clinical Cancer Research, 24(18), 4357–4364.

    Google Scholar 

  • Zhou, X., Liu, S., Kim, E. S., Herbst, R. S., & Lee, J. J. (2008). Bayesian adaptive design for targeted therapy development in lung cancer - a step toward personalized medicine. Clinical Trials, 5(3), 181–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jack Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, R., Lee, J.J. (2020). Novel Bayesian Adaptive Designs and Their Applications in Cancer Clinical Trials. In: Bekker, A., Chen, (.DG., Ferreira, J.T. (eds) Computational and Methodological Statistics and Biostatistics. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-42196-0_17

Download citation

Publish with us

Policies and ethics