Skip to main content
Log in

A framework for linking dispersal biology to connectivity across landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Dispersal typically consists of three components—departure, transience and settlement—each of which can be influenced by the landscape. A fundamental aspect of dispersal is the dispersal kernel, which describes how the likelihood of settlement varies as a function of the distance from the departure location. Dispersal concepts are often closely connected to the interpretation of landscape connectivity, yet models of landscape connectivity often do not generate dispersal kernels nor explicitly capture the three components of dispersal.

Objectives

We apply Markov chain theory for the generation of random-walk dispersal kernels that are based on the three components of dispersal to better link dispersal processes to landscape connectivity.

Methods

We extend the spatial absorbing Markov chain (SAMC) framework, which is aimed at addressing a broad range of problems in landscape connectivity, to explicitly model dispersal kernels that acknowledge each component of the dispersal process and how the landscape can alter each of these components. We provide an example with the Florida black bear (Ursus americanus floridanus), a species of conservation and management concern, where we contrast expected connectivity between key subpopulations when models do and do not consider random-walk dispersal kernels.

Results

Our extensions show how the SAMC can generate different types of random-walk kernels that include information on how the landscape alters departure, transience and settlement processes. Importantly, this framework can also readily incorporate mortality into predictions and be applied to make time-explicit predictions across landscapes. Connectivity for the Florida black bear is predicted to be much lower when acknowledging dispersal kernels and suggests that the settlement process may be more influential to connectivity predictions than landscape resistance.

Conclusion

These results provide a foundation for applying the SAMC to dispersal kernels. Not only do these extensions provide a formal linkage of connectivity to concepts in dispersal biology, but also help to bring together concepts from common connectivity models (e.g., circuit theory and least-cost resistant kernels) to facilitate predicting connectivity across landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data for bear example are provided at Figshare (https://figshare.com/; DOI: https://doi.org/10.6084/m9.figshare.22776218).

Code availability

We provide the R code used to generate examples in Figures 2-3 using the samc package in the Supporting Information. Code for the black bear example is deposited at Figshare (https://figshare.com/:DOI: https://doi.org/10.6084/m9.figshare.22776218).

References

  • Acevedo MA, Sefair JA, Smith JC, Reichert B, Fletcher RJ Jr (2015) Conservation under uncertainty: optimal network protection strategies for worst-case disturbance events. J Appl Ecol 52:1588–1597

    Article  Google Scholar 

  • Albert CH, Rayfield B, Dumitru M, Gonzalez A (2017) Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv Biol 31(6):1383–1396

    Article  PubMed  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88(2):310–326

    Article  PubMed  Google Scholar 

  • Bocedi G, Zurell D, Reineking B, Travis JMJ (2014) Mechanistic modelling of animal dispersal offers new insights into range expansion dynamics across fragmented landscapes. Ecography 37(12):1240–1253

    Article  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87(2):290–312

    Article  PubMed  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80(2):205–225

    Article  PubMed  Google Scholar 

  • Brennan A, Hanks EM, Merkle JA et al (2018) Examining speed versus selection in connectivity models using elk migration as an example. Landsc Ecol 33(6):955–968

    Article  Google Scholar 

  • Brodie JF, Mohd-Azlan J, Schnell JK (2016) How individual links affect network stability in a large-scale, heterogeneous metacommunity. Ecology 97(7):1658–1667

    Article  PubMed  Google Scholar 

  • Bullock JM, Gonzalez LM, Tamme R et al (2017) A synthesis of empirical plant dispersal kernels. J Ecol 105(1):6–19

    Article  Google Scholar 

  • Clobert J, Baguette M, Benton TG, Bullock JM (eds) (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5(25):813–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21(3):788–799

    Article  PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2012) Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol Model 231:101–112

    Article  Google Scholar 

  • Cushman SA, Elliott NB, Bauer D et al (2018) Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE. https://doi.org/10.1371/journal.pone.0196213

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson BG, Albano CM, Anantharaman R et al (2019) Circuit-theory applications to connectivity science and conservation. Conserv Biol 33(2):239–249

    Article  PubMed  Google Scholar 

  • Diniz MF, Cushman SA, Machado RB, De Marco P (2020) Landscape connectivity modeling from the perspective of animal dispersal. Landsc Ecol 35(1):41–58

    Article  Google Scholar 

  • Dixon JD, Oli MK, Wooten MC, Eason TH, McCown JW, Paetkau D (2006) Effectiveness of a regional corridor in connecting two Florida black bear populations. Conserv Biol 20(1):155–162

    Article  PubMed  Google Scholar 

  • Etherington TR (2016) Least-cost modelling and landscape ecology: concepts, applications and opportunities. Curr Landsc Ecol Rep 1:40–53

    Article  Google Scholar 

  • Fandos G, Talluto M, Fiedler W, Robinson RA, Thorup K, Zurell D (2023) Standardised empirical dispersal kernels emphasise the pervasiveness of long-distance dispersal in European birds. J Anim Ecol 92(1):158–170

    Article  PubMed  Google Scholar 

  • Fletcher RJ Jr, Acevedo MA, Reichert BE, Pias KE, Kitchens WM (2011) Social network models predict movement and connectivity in ecological landscapes. Proc Natl Acad Sci USA 108:19282–19287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher RJ Jr, Revell A, Reichert BE, Kitchens WM, Dixon JD, Austin JD (2013) Network modularity reveals critical scales for connectivity in ecology and evolution. Nat Commun 4:2572

    Article  PubMed  Google Scholar 

  • Fletcher RJ Jr, Burrell N, Reichert BE, Vasudev D (2016) Divergent perspectives on landscape connectivity reveal consistent effects from genes to communities. Curr Landsc Ecol Rep 1(2):67–79

    Article  Google Scholar 

  • Fletcher RJ Jr, Sefair JA, Wang C et al (2019) Towards a unified framework for connectivity that disentangles movement and mortality in space and time. Ecol Lett 22(10):1680–1689

    Article  PubMed  Google Scholar 

  • Fletcher RJ, Sefair JA, Kortessis N et al (2022) Extending isolation by resistance to predict genetic connectivity. Methods Ecol Evol 13(11):2463–2477

    Article  Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: applications with R. Cambridge University Press

    Book  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press

    Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial-differential equations in ecology: spatial interactions and population-dynamics. Ecology 75(1):17–29

    Article  Google Scholar 

  • Hughes J, Lucet V, Barrett G et al (2023) Comparison and parallel implementation of alternative moving-window metrics of the connectivity of protected areas across large landscapes. Landsc Ecol 54:412

    Google Scholar 

  • Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56(2–3):234–238

    Article  CAS  PubMed  Google Scholar 

  • Koenig WD, VanVuren D, Hooge PN (1996) Detectability, philopatry and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11(12):514–517

    Article  CAS  PubMed  Google Scholar 

  • Larkin JL, Maehr DS, Hoctor TS, Orlando MA, Whitney K (2004) Landscape linkages and conservation planning for the black bear in west-central Florida. Anim Conserv 7:23–34

    Article  Google Scholar 

  • Maehr DS (1996) The comparative ecology of bobcat, black bear and Florida panther in south Florida. University of Florida, Gainesville

    Google Scholar 

  • Maehr DS, Smith JS, Cunningham MW, Barnwell ME, Larkin JL, Orlando MA (2003) Spatial characteristics of an isolated Florida black bear population. Southeast Nat 2(3):433–446

    Article  Google Scholar 

  • Marx AJ, Wang C, Sefair JA, Acevedo MA, Fletcher RJ (2020) SAMC: an R package for connectivity modeling with spatial absorbing Markov chains. Ecography 43(4):518–527

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution and conservation. Ecology 89(10):2712–2724

    Article  PubMed  Google Scholar 

  • Nathan R, Getz WM, Revilla E et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105(49):19052–19059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E (2012) Dispersal kernels: reivew. In: Clobert J (ed) Dispersal ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Ovaskainen O, Luoto M, Ikonen I, Rekola H, Meyke E, Kuussaari M (2008) An empirical test of a diffusion model: predicting clouded Apollo movements in a novel environment. Am Nat 171(5):610–619

    Article  PubMed  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151(2–3):279–292

    Article  Google Scholar 

  • Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647

    Article  Google Scholar 

  • Peterman WE, Pope NS (2021) The use and misuse of regression models in landscape genetic analyses. Mol Ecol 30(1):37–47

    Article  PubMed  Google Scholar 

  • Pfluger FJ, Balkenhol N (2014) A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 23(9):2146–2156

    Article  PubMed  Google Scholar 

  • Robertson EP, Fletcher RJ Jr, Cattau CE et al (2018) Isolating the roles of movement and reproduction on effective connectivity alters conservation priorities for an endangered bird. Proc Natl Acad Sci USA 115:8591–8596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saerens M, Achbany Y, Fouss F, Yen L (2009) Randomized shortest-path problems: two related models. Neural Comput 21(8):2363–2404

    Article  PubMed  Google Scholar 

  • Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48(3):668–678

    Article  Google Scholar 

  • Schnell JK, Harris GM, Pimm SL, Russell GJ (2013) Estimating extinction risk with metapopulation models of large-scale fragmentation. Conserv Biol 27(3):520–530

    Article  PubMed  Google Scholar 

  • Sefair JA, Smith JC, Acevedo MA, Fletcher RJ (2017) A defender-attacker model and algorithm for maximizing weighted expected hitting time with application to conservation planning. IISE Trans 49(12):1112–1128

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47(1):264–279

    Article  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573

    Article  Google Scholar 

  • Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10(3):219–229

    Article  PubMed  Google Scholar 

  • Vasudev D, Fletcher RJ Jr (2016) Mate choice interacts with movement limitations to influence effective dispersal. Ecol Model 327(10):65–73

    Article  Google Scholar 

  • Vasudev D, Fletcher RJ Jr, Goswami VR, Krishnadas M (2015) From dispersal constraints to landscape connectivity: lessons from species distribution modeling. Ecography 38:967–978

    Article  Google Scholar 

  • Vasudev D, Fletcher RJ Jr, Srinivas N, Marx AJ, Goswami VR (2023) Mapping the connectivity-conflict interface to inform conservation. Proc Natl Acad Sci USA 120:e2211482119

    Article  CAS  PubMed  Google Scholar 

  • Veals AM, Holbrook JD, Cherry MJ, Campbell TA, John H, Tewes ME (2023) Landscape connectivity for an endangered carnivore: habitat conservation and road mitigation for ocelots in the US. Landsc Ecol 38(2):363–381

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1):164–168

    Article  Google Scholar 

  • Zeigler SL, Fagan WF (2014) Transient windows for connectivity in a changing world. Mov Ecol 2(1):1–1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27(6):777–797

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM (2016) Using step and path selection functions for estimating resistance to movement: pumas as a case study. Landsc Ecol 31(6):1319–1335

    Article  Google Scholar 

  • Zeller KA, Lewsion R, Fletcher RJ, Tulbure MG, Jennings MK (2020) Understanding the importance of dynamic landscape connectivity. Land 9(9):303

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DEB-1655555) to RJF and the University of Florida’s Biodiversity Institute. We thank B. Peterman and two anonymous reviewers for their suggestions.

Funding

Funding was provided by National Science Foundation (Grant No. DEB-1655555).

Author information

Authors and Affiliations

Authors

Contributions

RJF conceived the ideas and designed methodology. RJF and MI formatted and analyzed data. RJF led writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Robert J. Fletcher Jr..

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 981 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, R.J., Iezzi, M.E., Guralnick, R. et al. A framework for linking dispersal biology to connectivity across landscapes. Landsc Ecol 38, 2487–2500 (2023). https://doi.org/10.1007/s10980-023-01741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01741-8

Keywords

Navigation