Skip to main content

Advertisement

Log in

Prediction-based approach for quantifying phenological mismatch across landscapes under climate change

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate change is driving phenological shifts across landscapes, but uncoordinated shifts might cause a potential “phenological mismatch.” There has been little consensus on the existence and magnitude of such a mismatch. The lack of agreement among studies can be attributed to the wide variety of definitions for the term “phenological mismatch,” as well as the methods used to measure it. The lack of comparability among measures of phenological mismatch creates a challenge for conservation.

Objectives

We proposed a novel theoretical framework to generalize existing measures of phenological mismatch and an approach to quantify the decoupling between phenology and the environment using the loss in predictive skill over time. We aimed to estimate the magnitude of phenological mismatch on large spatial scales and test the proposed predictive approach’s ability to detect multiple types of phenological mismatch.

Methods

We modeled historical climate-phenology coupling and quantified phenological mismatch as the deviation between observed and predicted phenology under climate change. First, we used two large empirical spatiotemporal datasets to estimate phenological mismatch in plant flowering phenology in the eastern United States and bird reproductive phenology in Finland. Historical climate-phenology coupling was modeled with spatial linear regression. Second, we conducted four simulation experiments representing different types of mismatch during climate change. We recovered simulated phenological mismatch by fitting a data-driven nonlinear model (Gaussian Process Empirical Dynamic Modeling) and predicting phenology.

Results

In the eastern US, we found that advancing plant flowering phenology generally matched spring warming from 1895 to 2015, with seven out of the 19 species studied having significant phenological mismatches, with observed flowering time earlier than predictions even considering warming. A similar phenological mismatch was found in birds in Finland from 1975 to 2017, with the bird breeding season advancing more than expected in 21 out of the 36 species studied. In four simulation experiments, we were able to accurately recover the simulated phenological mismatches in the timing of events, pace of development, and intensity of activities, although with greater challenges in quantifying a mismatch in life history.

Conclusions

Overall, these case studies show that our prediction-based measure effectively quantifies multiple types of phenological mismatch, providing a more generalizable and comparable measure of phenological mismatch across study systems and scales. This study will enable the investigation of phenological mismatch at large scales, improving understanding of the patterns and consequences of climate-change-induced phenological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

We used published and publicly available raw data in all case studies. Plant reproductive phenology data from herbarium specimens in the eastern continental United States (Park et al. 2018) are available from the Harvard Forest Data Archive (HF309): https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF309. Bird nestling ringing data in Finland (Hällfors et al. 2020) are available from Dryad: https://doi.org/10.5061/dryad.wstqjq2ht. TerraClimate data (Abatzoglou et al. 2018) are available from the data catalog of the Climatology Lab: https://www.climatologylab.org/terraclimate.html. The fully reproducible workflow, including code and data, is available on Zenodo (https://doi.org/10.5281/zenodo.7553656).

References

  • Abarbanel HDI, Rulkov NF, Sushchik MM (1996) Generalized synchronization of chaos: the auxiliary system approach. Phys Rev E 53(5):4528–4535

    Article  CAS  Google Scholar 

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data. https://doi.org/10.1038/sdata.2017.191

    Article  PubMed  PubMed Central  Google Scholar 

  • Abernethy K, Bush ER, Forget P-M, Mendoza I, Morellato LPC (2018) Current issues in tropical phenology: a synthesis. Biotropica 50(3):477–482

    Article  Google Scholar 

  • Abram NJ, McGregor HV, Tierney JE, Evans MN, McKay NP, Kaufman DS (2016) Early onset of industrial-era warming across the oceans and continents. Nature 536(7617):411–418

    Article  CAS  PubMed  Google Scholar 

  • Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Change Biol 12(4):652–661

    Article  Google Scholar 

  • Aikens EO, Monteith KL, Merkle JA, Dwinnell SPH, Fralick GL, Kauffman MJ (2020) Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate. Glob Change Biol 26(8):4215–4225

    Article  Google Scholar 

  • Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc: Biol Sci 279(1743):3843–3852

    PubMed  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci 108(51):20645–20649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beard KH, Kelsey KC, Leffler AJ, Welker JM (2019) The missing angle: ecosystem consequences of phenological Mismatch. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2019.07.019

    Article  PubMed  Google Scholar 

  • Blondel J, Maistre M, Perret P (1993) Habitat heterogeneity and life-history variation of Mediterranean blue tits (Parus caeruleus). Auk 110(3):511–520

    Article  Google Scholar 

  • Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep 366(1–2):1–101

    Article  CAS  Google Scholar 

  • Borchert R (1996) Phenology and flowering periodicity of Neotropical dry forest species: evidence from herbarium collections. J Trop Ecol 12(1):65–80

    Article  Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411(6835):296

    Article  CAS  PubMed  Google Scholar 

  • Both C, Asch MV, Bijlsma RG, Burg ABVD, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78(1):73–83

    Article  PubMed  Google Scholar 

  • Brown R, Kocarev L (2000) A unifying definition of synchronization for dynamical systems. Chaos: an Interdisciplinary J Nonlinear Sci 10(2):344–349

    Article  Google Scholar 

  • Burger C, Belskii E, Eeva T, Laaksonen T, Mägi M, Mänd R, Qvarnström A, Slagsvold T, Veen T, Visser ME, Wiebe KL, Wiley C, Wright J, Both C (2012) Climate change, breeding date and nestling diet: How temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. J Anim Ecol 81(4):926–936

    Article  PubMed  Google Scholar 

  • Burthe S, Daunt F, Butler A, Elston DA, Frederiksen M, Johns D, Newell M, Thackeray SJ, Wanless S (2012) Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar Ecol Prog Ser 454:119–133

    Article  Google Scholar 

  • Clark JS, Agarwal P, Bell DM, Flikkema PG, Gelfand A, Nguyen X, Ward E, Yang J (2011) Inferential ecosystem models, from network data to prediction. Ecol Appl 21(5):1523–1536

    Article  PubMed  Google Scholar 

  • Clausen KK, Clausen P (2013) Earlier Arctic springs cause phenological mismatch in long-distance migrants. Oecologia 173(3):1101–1112

    Article  PubMed  Google Scholar 

  • Cohen JM, Lajeunesse MJ, Rohr JR (2018) A global synthesis of animal phenological responses to climate change. Nat Clim Chang. https://doi.org/10.1038/s41558-018-0067-3

    Article  Google Scholar 

  • Crabbe RA, Dash J, Rodriguez-Galiano VF, Janous D, Pavelka M, Marek MV (2016) Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ 563–564:486–495

    Article  PubMed  Google Scholar 

  • Cushing DH (1969) The regularity of the spawning season of some fishes. ICES J Mar Sci 33(1):81–92

    Article  Google Scholar 

  • Descamps S, Ramírez F, Benjaminsen S, Anker-Nilssen T, Barrett RT, Burr Z, Christensen-Dalsgaard S, Erikstad K-E, Irons DB, Lorentsen S-H, Mallory ML, Robertson GJ, Reiertsen TK, Strøm H, Varpe Ø, Lavergne S (2019) Diverging phenological responses of Arctic seabirds to an earlier spring. Glob Change Biol 25(12):4081–4091

    Article  Google Scholar 

  • Doiron M, Gauthier G, Lévesque E (2015) Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob Change Biol 21(12):4364–4376

    Article  Google Scholar 

  • Donnelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55(6):805–817

    Article  PubMed  Google Scholar 

  • Dunn PO, Møller AP (2014) Changes in breeding phenology and population size of birds. J Anim Ecol 83(3):729–739

    Article  PubMed  Google Scholar 

  • Dunn PO, Winkler DW, Whittingham LA, Hannon SJ, Robertson RJ (2011) A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92(2):450–461

    Article  PubMed  Google Scholar 

  • Durant JM, Hjermann DØ, Anker-Nilssen T, Beaugrand G, Mysterud A, Pettorelli N, Stenseth NC (2005) Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol Lett 8(9):952–958

    Article  PubMed  Google Scholar 

  • Duveneck MJ, Thompson JR (2017) Climate change imposes phenological trade-offs on forest net primary productivity. J Geophys Res Biogeosci 122(9):2298–2313

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002):881

    Article  CAS  PubMed  Google Scholar 

  • Elmore AJ, Guinn SM, Minsley BJ, Richardson AD (2012) Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob Change Biol 18(2):656–674

    Article  Google Scholar 

  • Evans EW, Carlile NR, Innes MB, Pitigala N (2013) Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch. J Appl Entomol 137(5):383–391

    Article  Google Scholar 

  • Finley AO, Banerjee S, Gelfand AE (2015) SpBayes for large univariate and multivariate point-referenced spatio-temporal data models. J Stat Softw 63(1):1–28

    Google Scholar 

  • Finley AO, Banerjee S, Gelfand AE (2013) SpBayes for large univariate and multivariate point-referenced spatio-temporal data models. ArXiv:1310.8192 [Stat]. http://arxiv.org/abs/1310.8192. Accessed 11 Dec 2023

  • Forrest JR (2016) Complex responses of insect phenology to climate change. Curr Opin Insect Sci 17:49–54

    Article  PubMed  Google Scholar 

  • Forrest JRK, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol Monogr 81(3):469–491

    Article  Google Scholar 

  • Freeman BG, Song Y, Feeley KJ, Zhu K (2021) Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol Lett 24(8):1697–1708

    Article  PubMed  Google Scholar 

  • Gaston AJ, Gilchrist HG, Mallory ML, Smith PA (2009) Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. The Condor 111(1):111–119

    Article  Google Scholar 

  • Hällfors MH, Antão LH, Itter M, Lehikoinen A, Lindholm T, Roslin T, Saastamoinen M (2020) Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc Natl Acad Sci 117(31):18557–18565

    Article  PubMed  PubMed Central  Google Scholar 

  • Hipfner JM (2008) Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. Mar Ecol Prog Ser. https://doi.org/10.3354/meps07603

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H-M (2017) Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  • Hufkens K, Basler D, Milliman T, Melaas EK, Richardson AD (2018) An integrated phenology modelling framework in r. Methods Ecol Evol 9(5):1276–1285

    Article  Google Scholar 

  • Iler AM, Inouye DW, Høye TT, Miller-Rushing AJ, Burkle LA, Johnston EB (2013) Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Glob Change Biol 19(8):2348–2359

    Article  Google Scholar 

  • Jepsen JU, Kapari L, Hagen SB, Schott T, Vindstad OPL, Nilssen AC, Ims RA (2011) Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Glob Change Biol 17(6):2071–2083

    Article  Google Scholar 

  • Ji R, Jin M, Varpe Ø (2013) Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol 19(3):734–741

    Article  Google Scholar 

  • Jones T, Cresswell W (2010) The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change? J Anim Ecol 79(1):98–108

    Article  PubMed  Google Scholar 

  • Jönsson AM, Appelberg G, Harding S, Bärring L (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle. Ips Typographus Glob Change Biol 15(2):486–499

    Article  Google Scholar 

  • Keenan TF, Richardson AD, Hufkens K (2020) On quantifying the apparent temperature sensitivity of plant phenology. New Phytol 225(2):1033–1040

    Article  PubMed  Google Scholar 

  • Kharouba HM, Wolkovich EM (2020) Disconnects between ecological theory and data in phenological mismatch research. Nat Clim Chang. https://doi.org/10.1038/s41558-020-0752-x

    Article  Google Scholar 

  • Kharouba HM, Ehrlén J, Gelman A, Bolmgren K, Allen JM, Travers SE, Wolkovich EM (2018) Global shifts in the phenological synchrony of species interactions over recent decades. Proc Natl Acad Sci 115(20):5211–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killmann W, Thong HL (1995) The periodicity of growth in tropical trees with special reference to dipterocarpaceae—a review. IAWA J 16(4):329–335

    Article  Google Scholar 

  • Kocarev L, Parlitz U (1995) General approach for chaotic synchronization with applications to communication. Phys Rev Lett 74(25):5028–5031

    Article  CAS  PubMed  Google Scholar 

  • Koeller P, Fuentes-Yaco C, Platt T, Sathyendranath S, Richards A, Ouellet P, Orr D, Skúladóttir U, Wieland K, Savard L, Aschan M (2009) Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean. Science 324(5928):791–793

    Article  CAS  PubMed  Google Scholar 

  • Kudo G, Ida TY (2013) Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94(10):2311–2320

    Article  PubMed  Google Scholar 

  • La Sorte FA, Graham CH (2020) Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J Anim Ecol. https://doi.org/10.1111/1365-2656.13345

    Article  PubMed  Google Scholar 

  • Liu Y, Reich PB, Li G, Sun S (2011) Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology 92(6):1201–1207

    Article  PubMed  Google Scholar 

  • MacKenzie CM, Johnston J, Miller-Rushing AJ, Sheehan W, Pinette R, Primack R (2019) Advancing leaf-out and flowering phenology is not matched by migratory bird arrivals recorded in hunting guide’s journal in Aroostook county. Maine Northeast Naturalist 26(3):561–579

    Article  Google Scholar 

  • Masson-Delmotte V (2018) IPCC Special Report on Global Warming of 1.5 °C. WMO. https://www.ipcc.ch/sr15/. Accessed 6 Oct 2022

  • Mayor SJ, Guralnick RP, Tingley MW, Otegui J, Withey JC, Elmendorf SC, Andrew ME, Leyk S, Pearse IS, Schneider DC (2017) Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci Rep 7(1):1–10

    Article  Google Scholar 

  • McKinney AM, CaraDonna PJ, Inouye DW, Barr B, Bertelsen CD, Waser NM (2012) Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-season nectar resources. Ecology 93(9):1987–1993

    Article  PubMed  Google Scholar 

  • McKinnon L, Picotin M, Bolduc E, Juillet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90(8):961–971

    Article  Google Scholar 

  • Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Reconciling controversies about the ‘global warming hiatus.’ Nature. https://doi.org/10.1038/nature22315

    Article  PubMed  Google Scholar 

  • Merkel B, Descamps S, Yoccoz NG, Danielsen J, Daunt F, Erikstad KE, Ezhov AV, Grémillet D, Gavrilo M, Lorentsen S-H, Reiertsen TK, Steen H, Systad GH, Þórarinsson ÞL, Wanless S, Strøm H (2019) Earlier colony arrival but no trend in hatching timing in two congeneric seabirds (Uria spp.) across the North Atlantic. Biol Let 15(10):20190634

    Article  Google Scholar 

  • Meza FJ, Silva D, Vigil H (2008) Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double cropping as an emerging adaptation alternative. Agric Syst 98(1):21–30

    Article  Google Scholar 

  • Mjaaseth RR, Hagen SB, Yoccoz NG, Ims RA (2005) Phenology and abundance in relation to climatic variation in a sub-arctic insect herbivore–mountain birch system. Oecologia 145(1):53–65

    Article  PubMed  Google Scholar 

  • Munch SB, Poynor V, Arriaza JL (2017) Circumventing structural uncertainty: a Bayesian perspective on nonlinear forecasting for ecology. Ecol Complex 32:134–143

    Article  Google Scholar 

  • Nakazawa T, Doi H (2012) A perspective on match/mismatch of phenology in community contexts. Oikos 121(4):489–495. https://doi.org/10.1111/j.1600-0706.2011.20171.x

    Article  Google Scholar 

  • Niclas J, Anders H, Per L (2007) Climate change and the optimal arrival of migratory birds. Proc Royal Soc B 274(1607):269–274

    Article  Google Scholar 

  • Nicola S, Roberto A, Diego R, von Jost H, Antonello P, Kathrin H, Ommo H, Aleksi L, Esa L, Kalle R, Maria R, Leonid S (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc Royal Soc b 278(1707):835–842

    Article  Google Scholar 

  • Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, del Delgado MM (2013) Community-level phenological response to climate change. Proc Natl Acad Sci 110(33):13434–13439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park DS, Breckheimer IK, Williams AC, Law E, Ellison AM, Davis CC (2018) Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2017.0394

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37

    Article  CAS  PubMed  Google Scholar 

  • Paull SH, Johnson PTJ (2014) Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk. Ecol Lett 17(4):445–453

    Article  PubMed  Google Scholar 

  • Pearce-Higgins JW, Dennis P, Whittingham MJ, Yalden DW (2010) Impacts of climate on prey abundance account for fluctuations in a population of a northern wader at the southern edge of its range. Glob Change Biol 16(1):12–23

    Article  Google Scholar 

  • Petanidou T, Kallimanis AS, Sgardelis SP, Mazaris AD, Pantis JD, Waser NM (2014) Variable flowering phenology and pollinator use in a community suggest future phenological mismatch. Acta Oecologica 59:104–111

    Article  Google Scholar 

  • Plard F, Gaillard J-M, Coulson T, Hewison AJM, Delorme D, Warnant C, Bonenfant C (2014) Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol 12(4):e1001828

    Article  PubMed  PubMed Central  Google Scholar 

  • Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans Royal Soc B 363(1501):2367–2373

    Article  Google Scholar 

  • Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc Royal Soc B 275(1646):2005–2013

    Article  Google Scholar 

  • PRISM Climate Group (2019) PRISM Gridded Climate Data. Oregon State University. https://prism.oregonstate.edu/

  • Qiu T, Song C, Clark JS, Seyednasrollah B, Rathnayaka N, Li J (2020) Understanding the continuous phenological development at daily time step with a Bayesian hierarchical space-time model: impacts of climate change and extreme weather events. Remote Sens Environ 247:111956

    Article  Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed 11 Dec 2023

  • Rafferty NE, Ives AR (2011) Effects of experimental shifts in flowering phenology on plant–pollinator interactions. Ecol Lett 14(1):69–74

    Article  PubMed  Google Scholar 

  • Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of mutualisms. Oikos (copenhagen, Denmark) 124(1):14–21

    PubMed  Google Scholar 

  • Ravignani A (2017) Interdisciplinary debate: agree on definitions of synchrony. Nature 545:158

    Article  CAS  PubMed  Google Scholar 

  • Read JS, Jia X, Willard J, Appling AP, Zwart JA, Oliver SK, Kumar V (2019) Process-guided deep learning predictions of lake water temperature. Water Resour Res 55(11):9173–9190

    Article  Google Scholar 

  • Reed TE, Jenouvrier S, Visser ME (2013) Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J Anim Ecol 82(1):131–144

    Article  PubMed  Google Scholar 

  • Remsberg EE, Deaver LE (2005) Interannual, solar cycle, and trend terms in middle atmospheric temperature time series from HALOE. J Geophys Res: Atmospheres. https://doi.org/10.1029/2004JD004905

    Article  Google Scholar 

  • Reneerkens J, Schmidt NM, Gilg O, Hansen J, Hansen LH, Moreau J, Piersma T (2016) Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol Evol 6(20):7375–7386

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner SS, Zohner CM (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst 49(1):165–182

    Article  Google Scholar 

  • Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles WR, Heiderman RR, Warren JM, Hanson PJ (2018) Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560(7718):368

    Article  CAS  PubMed  Google Scholar 

  • Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. IEEE Int Conf Neural Netw 1:586–591

    Article  Google Scholar 

  • Rockwell RF, Gormezano LJ, Koons DN (2011) Trophic matches and mismatches: can polar bears reduce the abundance of nesting snow geese in western Hudson Bay? Oikos 120(5):696–709

    Article  Google Scholar 

  • Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI (1995) Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E 51(2):980–994

    Article  CAS  Google Scholar 

  • Sanz JJ, Potti J, Moreno J, Merino S, Frías O (2003) Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob Change Biol 9(3):461–472

    Article  Google Scholar 

  • Satterthwaite WH, Carlson SM, Allen-Moran SD, Vincenzi S, Bograd SJ, Wells BK (2014) Match-mismatch dynamics and the relationship between ocean-entry timing and relative ocean recoveries of Central Valley fall run Chinook salmon. Mar Ecol Prog Ser 511:237–248

    Article  Google Scholar 

  • Schiff SJ, So P, Chang T, Burke RE, Sauer T (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E 54(6):6708–6724

    Article  CAS  Google Scholar 

  • Seifert CA, Lobell DB (2015) Response of double cropping suitability to climate change in the United States. Environ Res Lett 10(2):024002

    Article  Google Scholar 

  • Senior VL, Evans LC, Leather SR, Oliver TH, Evans KL (2020) Phenological responses in a sycamore–aphid–parasitoid system and consequences for aphid population dynamics: a 20 year case study. Glob Change Biol 26(5):2814–2828

    Article  Google Scholar 

  • Seyednasrollah B, Swenson JJ, Domec J-C, Clark JS (2018) Leaf phenology paradox: why warming matters most where it is already warm. Remote Sens Environ 209:446–455

    Article  Google Scholar 

  • Shen M, Tang Y, Chen J, Zhu X, Zheng Y (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric for Meteorol 151(12):1711–1722

    Article  Google Scholar 

  • Shipley JR, Twining CW, Taff CC, Vitousek MN, Flack A, Winkler DW (2020) Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2009864117

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer MC, Parmesan C (2010) Phenological asynchrony between herbivorous insects and their hosts: Signal of climate change or pre-existing adaptive strategy? Philos Trans Royal Soc B 365(1555):3161–3176

    Article  Google Scholar 

  • Song Y, Zajic CJ, Hwang T, Hakkenberg CR, Zhu K (2021) Widespread mismatch between phenology and climate in human-dominated landscapes. AGU Advances 2(4):e2021AV000431

    Article  Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268):734–741

    Article  CAS  PubMed  Google Scholar 

  • Sugihara G, Grenfell BT, May RM, Tong H (1994) Nonlinear forecasting for the classification of natural time series. Philos Trans Royal Soc Lond. Ser a 348(1688):477–495

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds) Dynamical systems and turbulence, Warwick 1980. Springer, Berlin, pp 366–381

    Chapter  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16(12):3304–3313

    Article  Google Scholar 

  • Tikkanen O-P, Julkunen-Tiitto R (2003) Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136(2):244–251

    Article  PubMed  Google Scholar 

  • Van Noordwijk AJ, McCleery RH, Perrins CM (1995) Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J Anim Ecol 64(4):451–458

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc Royal Soc B 272(1581):2561–2569

    Article  Google Scholar 

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc Royal Soc B 265(1408):1867–1870

    Article  Google Scholar 

  • Visser ME, te Marvelde L, Lof ME (2012) Adaptive phenological mismatches of birds and their food in a warming world. J Ornithol 153(1):75–84

    Article  Google Scholar 

  • Vitasse Y, Signarbieux C, Fu YH (2018) Global warming leads to more uniform spring phenology across elevations. Proc Natl Acad Sci 115(5):1004–1008

    Article  CAS  PubMed  Google Scholar 

  • Wiesenfeldt M, Parlitz U, Lauterborn W (2001) Mixed state analysis of multivariate time series. Int J Bifurcation Chaos 11(08):2217–2226

    Article  Google Scholar 

  • Wu J, Serbin SP, Xu X, Albert LP, Chen M, Meng R, Saleska SR, Rogers A (2017) The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. Glob Change Biol 23(11):4814–4827

    Article  Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Yun K, Hsiao J, Jung M-P, Choi I-T, Glenn DM, Shim K-M, Kim S-H (2017) Can a multi-model ensemble improve phenology predictions for climate change studies? Ecol Model 362:54–64

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB (2006) Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J Geophys Res Biogeosci. https://doi.org/10.1029/2006JG000217

    Article  Google Scholar 

  • Zhang X, Liu L, Henebry GM (2019) Impacts of land cover and land use change on long-term trend of land surface phenology: a case study in agricultural ecosystems. Environ Res Lett 14(4):044020

    Article  Google Scholar 

  • Zimova M, Mills LS, Lukacs PM, Mitchell MS (2014) Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proc Royal Soc b. https://doi.org/10.1098/rspb.2014.0029

    Article  Google Scholar 

  • Zimova M, Mills LS, Nowak JJ (2016) High fitness costs of climate change-induced camouflage mismatch. Ecol Lett 19(3):299–307. https://doi.org/10.1111/ele.12568

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Y. Song was supported by the UCSC Hammett Fellowship and Microsoft Azure AI for Earth grant. K. Zhu was supported by the UCSC Committee on Research Faculty Research Grant and NSF Awards 1926438, 2306198 (CAREER).

Funding

Y. Song was supported by the UCSC Hammett Fellowship and Microsoft Azure AI for Earth grant. K. Zhu was supported by the UCSC Committee on Research Faculty Research Grant and NSF Awards 1926438, 2306198 (CAREER).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data analyses were performed by YS. Methods of Gaussian Process empirical dynamic modeling was developed by SBM. The draft of the manuscript was written by YS and all authors commented and edited. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kai Zhu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1510 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Munch, S.B. & Zhu, K. Prediction-based approach for quantifying phenological mismatch across landscapes under climate change. Landsc Ecol 38, 821–845 (2023). https://doi.org/10.1007/s10980-023-01595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01595-0

Keywords

Navigation