Skip to main content

Advertisement

Log in

Spatial vulnerability assessment of silver fir and Norway spruce dieback driven by climate warming

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

A significant forest decline has been noticed these last years in Europe. Managers need tools to better anticipate these massive events.

Objectives

We evaluated the efficiency of easily available data about environmental conditions and stand characteristics to determine different levels of vulnerability.

Methods

We combined remote sensing images, photo-interpretation, and digital models describing environmental conditions within a modelling approach to achieve spatial vulnerability assessment of the stands. We focused on silver fir and Norway spruce stands in the Vosges mountains (8900 km2, northeastern France), where severe symptoms of decline are visible.

Results

Silver fir were predicted highly vulnerable on 7% of their area versus 33% for Norway spruce. Using an independent dataset, we observed ten-times (silver fir) and two-times (Norway spruce) higher mortality rates in the units with a high level of vulnerability than in the others. About half of the model deviance was directly or indirectly explained by variables related to water stress (soils displaying low water availability, having suffered severe drying events these last years). Furthermore, the stands acclimatised to drought conditions were more resilient. Stand characteristics also influenced dieback spread, suggesting that an evolution of silvicultural practices toward mixed stands with broadleaved species and uneven-aged trees can contribute to better adapt to future climate conditions.

Conclusion

Vulnerability maps based on easily available geographic information describing climate, soil, and topography can efficiently discriminate canopy mortality patterns over broad areas, and can be useful tools for managers to mitigate the effects of climate change on forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://www.onf.fr/+/4bd::ces-arbres-forestiers-qui-souffrent-de-la-secheresse.html.

  2. https://inventaire-forestier.ign.fr/IMG/pdf/RF-Massif_vosgien.pdf.

  3. https://inventaire-forestier.ign.fr/spip.php?article646.

  4. https://theia.cnes.fr/atdistrib/rocket/#/search?collection=SENTINEL2.

  5. https://inventaire-forestier.ign.fr/spip.php?article646.

  6. The vulnerability maps for silver fir and Norway spruce dieback can be downloaded from the SILVAE website (https://silvae.agroparistech.fr/home/).

References

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):1–55

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

    Article  Google Scholar 

  • Anderson RG, Canadell JG, Randerson JT et al (2011) Biophysical considerations in forestry for climate protection. Front Ecol Environ 9(3):174–182

    Article  Google Scholar 

  • Archambeau J, Ruiz-Benito P, Ratcliffe S et al (2019) Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric For Meteorol 280:107772

    Article  Google Scholar 

  • Aubin I, Boisvert-Marsh L, Kebli H et al (2018) Tree vulnerability to climate change: improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere 9(2):e02108

    Article  Google Scholar 

  • Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS—a comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For Ecol Manag 249(3):171–186

    Article  Google Scholar 

  • Bastin JF, Finegold Y, Garcia C et al (2019) The global tree restoration potential. Science 365(6448):76

    Article  CAS  Google Scholar 

  • Becker M (1987) Bilan de santé actuel et rétrospectif du sapin (Abies alba Mill) dans les Vosges. Etude écologique et dendrochronologique. Ann des Sci Forestières 44(4):379–402

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  CAS  Google Scholar 

  • Bonneau M (1985) Le «nouveau dépérissement» des forêts. Symptômes, causes possibles, importance éventuelle de la nature des sols. Rev For Franç XXXVI(4):239–251

  • Bouvarel P (1984) Le déperissement des forêts attribué aux dépôts atmosphériques acides. Rev For Franç XXXVI(3):173–180

    Article  Google Scholar 

  • Brandl S, Paul C, Knoke T, Falk W (2020) The influence of climate and management on survival probability for Germany’s most important tree species. For Ecol Manag 458:117652

    Article  Google Scholar 

  • Brockerhoff EG, Barbaro L, Castagneyrol B et al (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26(13):3005–3035

    Article  Google Scholar 

  • Buras A, Rammig A, Zang CS (2020) Quantifying impacts of the 2018 drought on european ecosystems in comparison to 2003. Biogeosciences 17(6):1655–1672

    Article  Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Penuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108(4):1474–1478

    Article  CAS  Google Scholar 

  • Cavazzi S, Corstanje R, Mayr T, Hannam J, Fealy R (2013) Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma 195:111–121

    Article  Google Scholar 

  • Charru M, Seynave I, Morneau F, Rivoire M, Bontemps J-D (2012) Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data. Ann For Sci 69(2):195–205

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5(1):74–86

    Article  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–756

    Article  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Article  CAS  Google Scholar 

  • Coops NC, Waring RH (2011) Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecol Model 222(13):2119–2129

    Article  Google Scholar 

  • Das AJ, Slaton MR, Mallory J, Asner GP, Martin RE, Hardwick P (2022) Empirically validated drought vulnerability mapping in the mixed conifer forests of the Sierra Nevada. Ecol Appl 32(2):e2514

    Article  Google Scholar 

  • Das AJ, Stephenson NL, Flint A, Das T, van Mantgem PJ (2013) Climatic correlates of tree mortality in water- and energy-limited forests. PLoS ONE 8(7):e69917

    Article  CAS  Google Scholar 

  • de Groot M, Ogris N (2019) Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. For Ecol Manag 450:1117495

    Article  Google Scholar 

  • Dietze MC, Moorcroft PR (2011) Tree mortality in the eastern and central United States: patterns and drivers. Glob Change Biol 17(11):3312–3326

    Article  Google Scholar 

  • Elling W, Dittmar C, Pfaffelmoser K, Rotzer T (2009) Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) In Southern Germany. For Ecol Manag 257(4):1175–1187

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49

    Article  Google Scholar 

  • Fremout T, Thomas E, Gaisberger H et al (2020) Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. Glob Change Biol 26(6):3552–3568

    Article  Google Scholar 

  • Fujita S, Noguchi K, Tange T (2021) Different waterlogging depths affect spatial distribution of fine root growth for Pinus thunbergii seedlings. Front Plant Sci 12:614764

    Article  Google Scholar 

  • Gazol A, Camarero J, Anderegg W, Vicente-Serrano S (2017) Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob Ecol Biogeogr 26(2):166–176

    Article  Google Scholar 

  • Gazol A, Camarero JJ (2016) Functional diversity enhances silver fir growth resilience to an extreme drought. J Ecol 104(4):1063–1075

    Article  Google Scholar 

  • Gegout JC, Hervé JC, Houllier F, Pierrat JC (1998) Using vegetation to predict PH in the Vosges mountains Forests, p 17

  • Gegout JC, Hervé JC, Houllier F, Pierrat JC (2003) Prediction of forest soil nutrient status using vegetation. J Veg Sci 14(1):55–62

    Article  Google Scholar 

  • Guinier P (1959) Trois conifères de la flore vosgienne. Bull Soc Bot Fr 106(85):168–183

    Article  Google Scholar 

  • Han J, Singh VP (2020) Forecasting of droughts and tree mortality under global warming: a review of causative mechanisms and modeling methods. J Water Clim Change 11(3):600–632

    Article  Google Scholar 

  • Hartmann H, Moura CF, Anderegg WRL et al (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

    Article  Google Scholar 

  • IPCC (2022) Climate change 2022: impacts, adaptation, and vulnerability. In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 3056

    Google Scholar 

  • Jaime L, Batllori E, Margalef-Marrase J, Pérez Navarro M, Lloret F (2019) Scots pine (Pinus sylvestris L.) mortality is explained by the climatic suitability of both host tree and bark beetle populations. For Ecol Manag 448:119–129

    Article  Google Scholar 

  • King G, Zeng L (2001) Logistic regression in rare events data. Political Anal 9:137–163

    Article  Google Scholar 

  • Knight KS, Brown JP, Long RP (2013) Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis). Biol Invasions 15(2):371–383

    Article  Google Scholar 

  • Kolb T, Keefover-Ring K, Burr SJ, Hofstetter R, Gaylord M, Raffa KF (2019) Drought-mediated changes in tree physiological processes weaken tree defenses to bark beetle attack. J Chem Ecol 45(10):888–900

    Article  CAS  Google Scholar 

  • Landmann G, Bonneau M, Adrian M (1987) Le dépérissement du Sapin pectiné et de l’Epicéa commun dans le massif vosgien est-il en relation avec l’état nutritionnel des peuplements ? Rev For Franç XXXIX (1):5–11

  • Lebourgeois F (2007) Climatic signal in annual growth variation of silver fir (Abies alba Mill.) And Spruce (Picea abies Karst) from the french permanent plot network (RENECOFOR). Ann For Sci 64(3):333–343

    Article  Google Scholar 

  • Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag 303:61–71

    Article  Google Scholar 

  • Lehmann A, Overton JM, Leathwick JR (2002) GRASP: generalized regression analysis and spatial prediction. Ecol Model 157(2–3):189–207

    Article  Google Scholar 

  • Lévy GB, Becker M, Lefevre L, Schipfer R (1987) Le dépérissement du sapin dans les Vosges Rôle primordial du déficit d’alimentation en eau. Ann Sci For 44(4):403–416

  • Lu LL, Wang HC, Chhin S, Duan AG, Zhang JG, Zhang XQ (2019) A Bayesian model averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations. For Ecol Manag 440:169–177

    Article  Google Scholar 

  • Lundquist JE (2019) Impacts of bark beetles on ecosystem values in western forests—introduction. J For 117(2):136–137

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38(5):921–931

    Article  Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice-Hall, Upper Saddle River

  • Maringer J, Stelzer AS, Paul C, Albrecht AT (2021) Ninety-five years of observed disturbance-based tree mortality modeled with climate-sensitive accelerated failure time models. Eur J For Res 140(1):255–272

    Article  CAS  Google Scholar 

  • Marini L, Økland B, Jönsson AM et al (2017) Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40(12):1426–1435

    Article  Google Scholar 

  • Mc Cook LJ (1994) Understanding ecological community succession: causal models and theories, a review. Vegetatio 110:115–147

    Article  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Reportof the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • McCullagh P, Nelder JA (1997) Generalized linear models. Chapman & Hall, London

    Google Scholar 

  • McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739

    Article  Google Scholar 

  • Mesquita RCG, Delamonica P, Laurance WF (1999) Effect of surrounding vegetation on edge-related tree mortality in amazonian forest fragments. Biol Conserv 91(2–3):129–134

    Article  Google Scholar 

  • Michel A, Seidling W (2018) Forest condition in Europe: 2018 Technical Report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). BFW Austrian Research Centre for Forests, Vienna, p 128

  • Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R (2017) Climate variability drives recent tree mortality in Europe. Glob Change Biol 23(11):4788–4797

    Article  Google Scholar 

  • Obladen N, Dechering P, Skiadaresis G et al (2021) Tree mortality of european beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agric For Meteorol 307(8):108482

  • Ols C, Bontemps JD (2021) Pure and even-aged forestry of fast-growing conifers under climate change: on the need for a silvicultural paradigm shift. Environ Res Lett 16(2):5

    Article  Google Scholar 

  • Ondo I, Burns J, Piedallu C (2017) Including the lateral redistribution of soil moisture in a supra regional water balance model to better identify suitable areas for tree species. CATENA 153:207–218

    Article  Google Scholar 

  • Pedersen BS (1998) Modeling tree mortality in response to short- and long-term environmental stresses. Ecol Model 105(2–3):347–351

    Article  Google Scholar 

  • Peng CH, Ma ZH, Lei XD et al (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1(9):467–471

    Article  Google Scholar 

  • Pfeifer EM, Hicke JA, Meddens AJ (2011) Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Glob Change Biol 17(1):339–350

    Article  Google Scholar 

  • Piedallu C, Gégout J-C, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling: soil water balance improves tree species distribution models. Glob Ecol Biogeogr 22(4):470–482

    Article  Google Scholar 

  • Piedallu C, Gegout JC (2007) Multiscale computation of solar radiation for predictive vegetation modelling. Ann For Sci 64(8):899–909

    Article  Google Scholar 

  • Piedallu C, Gegout JC, Bruand A, Seynave I (2011) Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma 160(3–4):355–366

    Article  Google Scholar 

  • Piedallu C, Gegout JC, Lebourgeois F, Seynave I (2016) Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. J Veg Sci 27(2):387–399

    Article  Google Scholar 

  • Preisler HK, Grulke NE, Heath Z, Smith SL (2017) Analysis and out-year forecast of beetle, borer, and drought-induced tree mortality in California. For Ecol Manag 399:166–178

    Article  Google Scholar 

  • Pretzsch H (2005) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) And european beech (Fagus sylvatica L.): evidence from long-term experimental plots. Eur J For Res 124(3):193–205

    Article  Google Scholar 

  • Pretzsch H, Grams T, Haberle KH, Pritsch K, Bauerle T, Rotzer T (2020) Growth and mortality of Norway spruce and european beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees Struct Funct 34(4):957–970

    Article  Google Scholar 

  • Pukkala T, Lähde E, Laiho O (2013) Species interactions in the dynamics of even- and uneven-aged boreal forests. J Sustain For 32(4):371–403

    Article  Google Scholar 

  • Rogers Brendan M, Solvik K, Hogg EH et al (2018) Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob Change Biol 24(6):2284–2304

    Article  CAS  Google Scholar 

  • Rotzer T, Haberle KH, Kallenbach C, Matyssek R, Schutze G, Pretzsch H (2017) Tree species and size drive water consumption of beech/spruce forests—a simulation study highlighting growth under water limitation. Plant Soil 418(1–2):337–356

    Article  Google Scholar 

  • Roulleau (1912) Bulletin trimestriel de l’office forestier du centre et de l’Ouest tome 3 (1ere série)

  • Rouse WR, Wilson RG (1969) Time and space variations in the radiant energy fluxes over sloping forested terrain and their influence on seasonal heat and water balances at a middle latitude site. Geogr Ann Ser Phys Geogr 51(3):160–175

    Article  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9(11):1620–1633

    Article  Google Scholar 

  • Senf C, Buras A, Zang CS, Rammig A, Seidl R (2020) Excess forest mortality is consistently linked to drought across Europe. Nat Commun 11(1):1–8

  • Senf C, Pflugmacher D, Zhiqiang Y et al (2018) Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun 9(1):4978

    Article  Google Scholar 

  • Sinclair WA (1965) Comparisons of recent declines of white ash, oaks, and sugar maple in northeastern woodlands. Cornell Plant 20:62–67

    Google Scholar 

  • Staupendahl K, Zucchini W (2011) Estimating survival functions for the main tree species based on time series data from the forest condition survey in Rheinland-Pfalz, Germany. Allgemeine Forst Und Jagdzeitung 182(7–8):129–145

    Google Scholar 

  • Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus—site, climatic sensitivity and growth trends. J Ecol 92(6):954–966

    Article  Google Scholar 

  • Sun JB, Yang JY, Zhang C, Yun WJ, Qu JQ (2013) Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Math Comput Model 58(3–4):573–581

    Article  Google Scholar 

  • Taccoen A, Piedallu C, Seynave I et al (2019) Background mortality drivers of European tree species: climate change matters. Proc R Soc B Biol Sci 286(1900):20190386

  • Thomas AL, Gegout JC, Landmann G, Dambrine E, King D (2002) Relation between ecological conditions and fir decline in a sandstone region of the vosges mountains (northeastern France). Ann For Sci 29:265–273

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Laboratory of Climatology. Publication in Climatology, No. 8, Centerton

  • Torssonen P, Strandman H, Kellomaki S et al (2015) Do we need to adapt the choice of main boreal tree species in forest regeneration under the projected climate change? Forestry 88(5):564–572

    Article  Google Scholar 

  • Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12(1):13–49

    Google Scholar 

  • Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33(7):672–683

    Article  CAS  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the western United States. Science 323(5913):521–524

    Article  Google Scholar 

  • Verbesselt J, Robinson A, Stone C, Culvenor D (2009) Forecasting tree mortality using change metrics derived from MODIS satellite data. For Ecol Manag 258(7):1166–1173

    Article  Google Scholar 

  • Vitali V, Buntgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Change Biol 23(12):5108–5119

    Article  Google Scholar 

  • Western AW, Zhou S-L, Grayson RB, McMahon TA, Blöschl G, Wilson DJ (2004) Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J Hydrol 286(1):113–134

    Article  Google Scholar 

  • Williams AP, Allen CD, Macalady AK et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3(3):292–297

    Article  Google Scholar 

Download references

Funding

The Unité Mixte de Recherche (UMR) SILVA is supported by a grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Author information

Authors and Affiliations

Authors

Contributions

D.D. performed the remote sensing analysis, CB contributed to the GIS analysis, IS and JCG provided bioindicated indices, RP provided data from exceptional sanitary cuts, ML and CP developed the study conception and design, CP performed the data collection, realized the analysis and wrote the paper. All of the authors read and corrected the paper, and gave their final approval for publication.

Corresponding author

Correspondence to Christian Piedallu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 253.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piedallu, C., Dallery, D., Bresson, C. et al. Spatial vulnerability assessment of silver fir and Norway spruce dieback driven by climate warming. Landsc Ecol 38, 341–361 (2023). https://doi.org/10.1007/s10980-022-01570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01570-1

Keywords

Navigation