Skip to main content

Advertisement

Log in

Tree species and size drive water consumption of beech/spruce forests - a simulation study highlighting growth under water limitation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

By using a growth model, a simulation study was done to detect differing transpiration sums of an evergreen and a deciduous tree species within a mixed stand. The dependence of summer drought and transpiration on tree size and species, and the relationship of water use efficiency and tree growth was analyzed.

Methods

The process-based growth model BALANCE was used to simulate the water balance and the growth of individual trees for the isohydric species Picea abies and the anisohydric species Fagus sylvatica within a mixed forest stand.

Results

The individual tree based model was able to realistically simulate the water balances at tree and stand level. Actual evapotranspiration and soil water content differed in species and was size-dependent. Spruce was more affected by drought than beech. Drought stress increased with tree size, an effect which was more pronounced for spruce than for beech. Wood productivity was positively correlated with water-use efficiency being more distinct in beech than spruce.

Conclusions

Using individual tree based growth models effects of tree individuals in structured forest stands on water consumption, growth and productivity can be analyzed. The simulation results, i.e. the information of species-specific water consumption, growth rates and dependencies between water consumption and tree growth in stands of Norway spruce and European beech can help to mitigate effects of climate change on forest stand productivity and preserve an appropriate proportion of high quality timber mainly provided by spruce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, food and agriculture Organization of the United Nations, Rome

  • Anders S, Müller J, Augustin S, Rust S (2006) Die Ressource Wasser im zweischichtigen Nadel-Laub-Mischwald. In: Fritz, P. (Ed.), Ökologischer Waldumbau in Deutschland. oekom, München, pp 152–183

  • Baumgartner A, Liebscher HJ (1990) Lehrbuch er Hydrologie, Band 1: Allgemeine Hydrologie. Gebrüder Bornträger, Berlin

    Google Scholar 

  • BayFORKLIM (1996) Klimaatlas von Bayern. Verlag Kanzler, München

    Google Scholar 

  • Bergh J, Freeman M, Sigurdsson BD, Kellomäki S, Laitinen K, Niinistö S, Peltola H, Linder S (2003) Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. For Ecol Manag 183:327–340

    Article  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Cienciala E, Lindroth A, Čermák J, Hällgren JE, Kučera J (1994) The effects of water availability on transpiration, water potential and growth of Picea abies during a growing season. J Hydrol 155(1):57–71

    Article  Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124(4):319–333

    Article  Google Scholar 

  • Duursma RA, Medlyn BE (2012) MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions. Geosci Model Dev 5:919–940

    Article  Google Scholar 

  • DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft 238, Wirtschafts- und Verl.-Ges. Gas und Wasser, Bonn

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403

    Article  CAS  Google Scholar 

  • Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35:289–304

    Article  PubMed  Google Scholar 

  • Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For Ecol Manag 259(9):1761–1770

    Article  Google Scholar 

  • Frank DA (2007) Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152:131–139

    Article  PubMed  Google Scholar 

  • Friend AD, Stevens AK, Knox RG, Cannel MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (hybrid v3. 0). Ecol Model 95(2):249–287

    Article  CAS  Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impacts on agriculture and forests in Switzerland. Climate Change 79:79–102

    Article  CAS  Google Scholar 

  • Füssel HM, Jol A (2012) Climate change, impacts and vulnerability in Europe 2012 an indicator-based report. Publication Office of the European Union, Luxembourg

    Google Scholar 

  • Garcia-Forner N, Adams HD, Sevanto S, Collins AD, Dickman LT, Hudson PJ, Zeppel MJB, Jenkins MW, Powers H, Martinez-Vilalta J, McDowell NG (2016) Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant Cell Environ 39(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalo J, Peltola H, Zubizarreta-Gerendiain A, Kellomäki S (2007a) Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate. For Ecol Manag 241:243–257

    Article  Google Scholar 

  • Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007b) Effects of climate change and management on timber yield in boreal forests, with economic implications: a case study. Ecol Model 209:220–234

    Article  Google Scholar 

  • Gebauer T, Horna V, Leuschner C (2012) Canopy transpiration of pure and mixed forest stands with variable abundance of European beech. J Hydrol 442:2–14

    Article  Google Scholar 

  • Gebhardt T, Häberle KH, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning intensities Agr Forest Meteorol 197:235–243

    Google Scholar 

  • Goisser M, Geppert U, Rötzer T, Paya A, Huber A, Kerner R, Bauerle T, Pretzsch H, Pritsch K, Häberle KH, Matyssek R, Grams TEE (2016) Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies? For Ecol Manag 375:268–278

    Article  Google Scholar 

  • Göransson H, Bambrick MT, Godbold DL (2016) Overyielding of temperate deciduous tree mixtures is maintained under throughfall reduction. Plant Soil 408:285–298

  • Gracia C, Sabate S, Nadal-Sala D, Sánchez A, Pla E (2002) http://www.Creaf.Uab.Es/gotilwa/download.Htm. Accesssed 6Sept 2014

  • Grimm V (1999) Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future. Ecol Model 115:129–148

    Article  Google Scholar 

  • Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180

    Article  Google Scholar 

  • Grünwald T, Bernhofer C (2007) A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus 59B(3):387–396

    Article  Google Scholar 

  • Häberle KH, Weigt R, Nikolova P, Reiter IM, Cermak J, Wieser G, Blaschke H, Rötzer T, Pretzsch H, Matyssek R (2012) Case study “Kranzberger Forst” – growth and defence in European beech (Fagus sylvatica) and Norway spruce (Picea abies). In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, C., Pretzsch, H. (eds.): growth and Defence in plants, Ecol. Studies 220. Springer-Verlag, Berlin. doi:10.1007/978-3-642-30645-7

  • Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon?–how trees may cope with more frequent climate change-type drought events. Glob Chang Biol 17(1):642–655

    Article  Google Scholar 

  • Haxeltine A, Prentice IC (1996) A general model for the light use efficiency of primary production by terrestrial ecosystems. Funct Ecol 10:551–561

    Article  Google Scholar 

  • IPCC (2007) WGI fourth assessment report to climate change: the physical Science basis; summary for policymakers. IPCC Secretariat, Geneva, 18 p

    Google Scholar 

  • IPCC (2013) The physical Science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jonas M, Staeger T, Schönwiese CD (2005) Berechnung der Wahrscheinlichkeiten für das Eintreten von Extremereignissen durch Klimaänderungen - Schwerpunkt Deutschland. UBA-Bericht 201 41 254, Dessau, 252 p

  • Kirschbaum MUF (2000) Forest growth and species distribution in a changing climate. Tree Physiol 20:309–322

    Article  PubMed  Google Scholar 

  • Klein T, Shpringer I, Fikler B, Elbaz G, Cohen S, Yakir D (2013) Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. For Ecol Manag 302:34–42

    Article  Google Scholar 

  • KLIWA (2006) Regionale Klimaszenarien für Süddeutschland. KLIWA-Berichte 9:102 p

  • Kuptz D, Fleischmann F, Matyssek R, Grams TEE (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees as-sessed via whole-tree stable carbon isotope labeling. New Phytol 191:160–172

    Article  PubMed  Google Scholar 

  • Landsberg JJ (1986) Physiological ecology of Forest production. Academic Press, Sydney, p 198

    Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95(3):209–228

    Article  Google Scholar 

  • Lasch P, Badeck FW, Suckow F, Lindner M, Mohr RP (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecol. Manage. 207/1-2: 59-74

  • Lasch-Born P, Suckow F, Gutsch M, Reyer C, Hauf Y, Murawski A, Pilz T (2015) Forests under climate change: potential risks and opportunities. Meteorol Zeitschrift 24:157–172

    Article  Google Scholar 

  • Leuschner C (2009) Die Trockenheitsempfindlichkeit der Rotbuche vor dem Hintergrund des prognostizierten Klimawandels. Jahrbuch der Akademie der Wissenschaften zu Göttingen, Göttingen, pp 281–296

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. Trees in dry and wet years. For Ecol Manag 149:33–46

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354. doi:10.1126/science.aaf8957

  • LWF (2015) www.lwf.bayern.de/boden-klima/umweltmonitoring. Accessed July 2015

  • Lyr H, Fiedler HJ, Tranquillini W (1992) Physiologie und Ökologie der Gehölze. G. Fischer Verlag, Jena

    Google Scholar 

  • Mackay DS, Ahl DE, Ewers BE, Samanta S, Gower ST (2003) Physiological tradeoffs in the parameterization of a model of canopy transpiration. Adv Water Resour 26:179–194

    Article  Google Scholar 

  • Mäkela A (1990) Modeling structural-functional relationships in whole-tree growth: resource allocation. In: Dixon RK, Meldahl RS, Ruark GA, Warren WG (eds) Process modeling of forest growth responses to environmental stress. Timber Press, Inc., Portland, pp 81–95

    Google Scholar 

  • Matyssek R, Wieser G, Patzner K, Blaschke H, Häberle KH (2009) Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts? Eu. J. Forest Res. 128(6):579–596

    Article  Google Scholar 

  • Medlyn BE, Duursma RA, Zeppel MJB (2011) Forest productivity under climate change: a checklist for evaluating model studies. Climate Change 2:332–355

    Google Scholar 

  • Meehl GA, David TK, Easterling R, Changnon S, Pielke R Jr, Changnon D, Evans J, Groisman P, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root I, Richard T, Sylves T, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Met Soc 81(3):413–416

    Article  Google Scholar 

  • Meinzer FC, Woodruff DR, Marias DE, McCulloh KA, Sevanto S (2014) Dynamics of leaf water relations components in co-occurring iso-and anisohydric conifer species. Plant Cell Environ 37(11):2577–2586

    Article  PubMed  Google Scholar 

  • Menzel L (1997) Modellierung der Evapotranspiration im System Boden-Pflanze-Atmosphäre. PhD Thesis ETH Zürich /Switzerland

  • Mitscherlich G (1998) Wald, Wachstum und Umwelt, Bd. 2, Waldklima und Wasserhaushalt, 2. Aufl. Sauerländer Verlag, Frankfurt, 365 p

  • Niklas KJ (1994) Plant Allometry: the scaling of form and process. Univ Chicago Press, Chicago, 412 p

    Google Scholar 

  • Nikolova PS, Raspe S, Andersen CP, Mainiero R, Blaschke H, Matyssek R, Haeberle KH (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur. J. Forest Res. 128:87–98

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • Oliver CD, Larson B (1996) Forest stand dynamics. Wiley, New York, 520 p

    Google Scholar 

  • Polomski J, Kuhn N (1998 )Wurzelsysteme. Verlag Paul Haupt, Bern, p 290

  • Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model, Springer, Berlin, 664 p

    Book  Google Scholar 

  • Pretzsch H, Rais A (2016) Wood quality in complex forests versus even-aged monocultures: review and perspec-tives. Wood Sci Technol 50:845–880

    Article  CAS  Google Scholar 

  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient Ann For Sci 67. doi:10.1051/forest/2010037

  • Pretzsch H, Dieler J, Seifert T, Rötzer T (2012) Climate effects on productivity and resource use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees 26:1343–1360

    Article  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle K H, Pritsch K, Kerner R, Munch JC (2014a) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.] stands under drought: from reaction pattern to mechanism. Trees 28: 1305–1321

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014b) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Com. doi:10.1038/ncomms5967

  • Pretzsch H, Forrester D, Rötzer T (2015) Representation of species mixing in forest growth models. A review and perspective Ecol Modell 313:276–292

    Article  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten scots pine stands in the Swiss alps. Theor Appl Climatol 79(1–2):1–9

    Article  Google Scholar 

  • Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Ho¨glwald. Forstl Forschungsber, München 163:174

    Google Scholar 

  • Rötzer T (2013) Mixing patterns of tree species and their effects on resource allocation and growth in forest stands. Nova Acta Leopoldina 114(391):239–254

    Google Scholar 

  • Rötzer T, Chmielewski FM (2001) Phenological maps of Europe. Clim Res 18:249–257

    Article  Google Scholar 

  • Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118

    Article  PubMed  Google Scholar 

  • Rötzer T, Grote R, Pretzsch H (2005) Effects of environmental changes on the vitality of forest stands. Eu J Forest Res 124:349–362

    Article  Google Scholar 

  • Rötzer T, Leuchner M, Nunn AJ (2010) Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model. Int J Biometeorol 54(4):449–464

    Article  PubMed  Google Scholar 

  • Rötzer T, Seifert T, Gayler S, Priesack E, Pretzsch H (2012) Effects of stress and defence allocation on tree growth - simulation results at the individual and stand level. In Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch C. Pretzsch H (eds) growth and Defence in plants, Ecol. Studies 220. Springer-Verlag, Berlin. doi:10.1007/978-3-642-30645-7

  • Rötzer T, Liao Y, Görgen K, Schüler G, Pretzsch H (2013a) Modeling the impact of climate change on the productivity and water-use efficiency of a central European beech forest. Clim Res 58:81–95

    Article  Google Scholar 

  • Rötzer T, Liao Y, Klein D, Zimmermann L, Schulz C (2013b) Modellierung des Biomassezuwachses an bayerischen Waldklimastationen unter gegebenen und möglichen zukünftigen Klimabedingungen. AFJZ 184-11(12: 263-277

  • Schipka F, Heimann J, Leuschner C (2005) Regional variation in canopy transpiration of central European beech forests. Oecologia 143:260–270

    Article  PubMed  Google Scholar 

  • Schuhbäck T (2004) Nährelementstatus und Bodenzustand an der Bestandesgrenze Buche-Fichte im Mischbestand Kranzberger Forst. Diplomarbeit am Fachgebiet für Waldernährung und Wasserhaushalt an der Technischen Universität München

  • Schume H, Jost G, Katzensteiner K (2003) Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.)—European beech (Fagus sylvatica L.) stand. Geoderma 112:273–287

  • Schütze G, Biber P, Pretzsch H (2005) Wuchsreihe Freising FRE813 zur Erfassung und Nachbildung der Wuchsdynamik in Fichten-Buchen-Mischbeständen. DVFFA- Exkursionsführer MWW-EF 104(1):21 p

  • Schwalm CR, Ek AR (2004) A process-based model of forest ecosystems driven by meteorology. Ecol Model 179(3):317–348

    Article  CAS  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form - the pipe model theory. I Basic analyses Japanese Journal of Ecology 14:97–105

    Google Scholar 

  • Tajchman S (1967) Energie- und Wasserhaushalt verschiedener Pflanzenbestände bei München. Wiss. Mitt. Meteorol. Inst. Univ., München. Nr. 12

  • UBA (2007) Neue Ergebnisse zu regionalen Klimaänderungen. Hintergrundpapier „Neue Ergebnisse zu regionalen Klimaänderungen“ http://www.umweltbundesamt.de/uba-infopresse/hintergrund /Regionale-Klimaaenderungen.pdf, Umweltbundesamt Dessau. 27 pp

  • Van der Meer PJ, Jorritsma ITM, Kramer K (2002) Assessing climate change effects on long-term forest development: adjusting growth, phenology, and seed production in a gap model. For Ecol Manag 162:39–52

    Article  Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10:111–120

    Article  Google Scholar 

  • Zang C, Rothe A, Weis W, Pretzsch H (2011) Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allg Forst- u J-Ztg 5(6):98–112

    Google Scholar 

Download references

Acknowledgements

Thanks to the German Science Foundation (Deutsche Forschungsgemeinschaft) for providing the funds for the projects PR 292/12-1 and MA 1763/7-1 „Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech“. Thanks are also to the Bavarian State Ministry for Nutrition, Agriculture and Forestry and to the Bavarian State Ministry of the Environment and Consumer Protection for generous support of the roof buildings. The authors also thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rötzer.

Additional information

Responsible Editor: Susan Schwinning.

Electronic supplementary material

Fig. 1

(DOCX 194 kb)

Fig. 2

(DOCX 74 kb)

Table 1

(DOCX 20 kb)

Table 2

(DOCX 19 kb)

ESM 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rötzer, T., Häberle, K.H., Kallenbach, C. et al. Tree species and size drive water consumption of beech/spruce forests - a simulation study highlighting growth under water limitation. Plant Soil 418, 337–356 (2017). https://doi.org/10.1007/s11104-017-3306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3306-x

Keywords

Navigation