Skip to main content

Advertisement

Log in

Changes in agriculture-biodiversity trade-offs in relation to landscape context in the Argentine Chaco

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Better balancing agricultural production and biodiversity conservation is a central goal for many landscapes. Yet, empirical work on how to best achieve such a balance has focused mainly on the local scale, thereby disregarding that landscape context might mediate biodiversity-agriculture trade-offs.

Objectives

Focusing on vertebrates in the Argentine Chaco, we evaluate how trade-offs between agriculture and biodiversity vary with landscape context, from landscapes where agricultural and natural areas are separated to landscapes where both are interspersed.

Methods

We modelled the distributions of 226 vertebrates and use the resulting maps to describe the species richness of ecosystem-service providing guilds. We calculated three agricultural intensity metrics, and evaluated how both species richness and agricultural intensity vary along a gradient of landscape configuration, while controlling for landscape composition.

Results

Species richness and agricultural yields both varied with landscape configuration. Biodiversity was highest in mixed landscapes where agricultural and natural area are interspersed, whereas agricultural yields showed a more heterogeneous response, with some yield metrics highest in mixed and others in separated landscapes. As a result, agriculture/biodiversity trade-offs depended strongly on landscape configuration, irrespective of landscape composition. We also identified large areas with low vertebrate richness and agricultural yields, suggesting considerable potential for improving in at least one dimension.

Conclusions

Agriculture/biodiversity trade-offs varied with landscape configuration, suggesting that landscape design can balance these trade-offs. Our simple and broadly applicable approach can provide baseline information for landscape planning aimed at realizing co-benefits between agriculture and biodiversity—in the Gran Chaco and elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Source Olson et al. (2001); b Córdoba province, with districts making up the study region in light gray. The dashed line indicates areas above 500 m a.s.l. and dark areas indicate inland lakes and salt plains (all not considered in the study); c Vegetation classes in the study area (for 2017/18), including natural habitats suitable for conversion to agriculture (forests, shrublands and grasslands) and agricultural areas (crops and pastures). W = western sub-region; E = eastern sub-region

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adámoli J, Sennhauser E, Acero JM, Rescia A (1990) Stress and disturbance: vegetation dynamics in the dry Chaco region of Argentina. J Biogeogr 17:491–500

    Google Scholar 

  • Aide T, Clark M, Grau H, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Núñez MJ, Muñiz, M (2012) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262–271

    Google Scholar 

  • Auffret AG, Rico Y, Bullock JM, Hooftman DAP, Pakeman RJ, Soons MB, Suarez-Esteban A, Traveset A, Wagner HH, Cousins SAO (2017) Plant functional connectivity—integrating landscape structure and effective dispersal. J Ecol 105:1648–1656

    Google Scholar 

  • Banda-R K, Delgado-Salinas A, Dexter KG, Inares-Palomino R, Oliveira-Filho A, Prado D, Pullan M, Quintana C, Riina R, Rodríguez MG, Weintritt J, Acevedo-Rodríguez P, Adarve J, Álvarez E, Aranguren A, Arteaga JC, Aymard G, Castaño A, Ceballos-Mago N, Cogollo A, Cuadros H, Delgado F, Devia W, Dueñas H,  Fajardo L, Fernández A, Fernández MA, Franklin J, Freid EH, Galetti LA, Gonto R, González R, Graveson R, Helmer EH, Idárraga A, López R, Marcano-Vega H,  Martínez OG, Maturo HM, McDonald M, McLaren K, Melo O, Mijares F, Mogni V, Molina D, Moreno NP, Nassar JM, Neves DM, Oakley LJ, Oatham M, Olvera-Luna AR, Pezzini FF, Pennington RT (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1388

    CAS  PubMed  Google Scholar 

  • Bocco M, Coirini R, Karlin U, Von MA (2007) Evaluación socioeconómica de sistemas productivos sustentables en el Chaco arido, Argentina. Zonas Áridas 11:70–84

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    PubMed  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    PubMed  Google Scholar 

  • Bucher EH (1982) Chaco and Caatinga—South American arid savannas, woodlands and thickets. Ecol Stud 42:48–79

    Google Scholar 

  • Bucher EH, Huszar PC (1999) Sustainable management of the Gran Chaco of South America: ecological promise and economic constraints. J Environ Manag 57:99–108

    Google Scholar 

  • Butsic V, Kuemmerle T (2015) Using Optimization methods to allign food production and biodiversity conservation beyond land sharing and land sparing. Ecol Appl 25:589–595

    PubMed  Google Scholar 

  • Butsic V, Kuemmerle T, Pallud L, Helmstedt KJ, Macchi L, Potts MD (2020) Aligning biodiversity conservation and agricultural production in heterogeneous landscapes. Ecol Appl. https://doi.org/10.1002/eap.2057

    Article  PubMed  Google Scholar 

  • Capitanelli RG (1979) Clima. In: Vázquez JB, Miatello RA, E. R (eds) Geografía física de la provincia de Córdoba. Ed. Boldt, Buenos Aires, pp 45–138

  • Carrasco LR, Webb EL, Symes WS, Koh LP, Sodhi NS (2017) Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol 15:1–22

    Google Scholar 

  • De Camargo RX, Boucher-Lalonde V, Currie DJ (2018) At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Divers Distrib 24:629–639

    Google Scholar 

  • Delzeit R, Zabel F, Meyer C (2017) Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg Environ Chang. https://doi.org/10.1007/s10113-016-0927-1

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitao PJ, Munkemuller T, Mcclean C, Osborne PE,  Reineking B, Schroeder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Google Scholar 

  • Dotta G, Phalan B, Silva TW, Green R, Balmford A (2016) Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America. Conserv Biol 30:618–627

    CAS  PubMed  Google Scholar 

  • Egli L (2018) intensification and biodiversity conservation Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Glob Chang Biol 24:2212–2228

    PubMed  Google Scholar 

  • Ekroos J, Ödman AM, Andersson GKS, Birkhofer K, Herbertsson L, Klatt BK, Olsson O, Olsson PA, Persson, AS, Prentice HC, Rundlöf M, Smith HG (2016) Sparing land for biodiversity at multiple spatial scales. Front Ecol Evol 3:1–11

    Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Fischer J, Brosi B, Daily GC, Ehrlich PR, Goldman R, Goldstein J, Lindenmayer DB, Manning AD, Mooney HA, Pejchar L, Ranganathan J, Tallis H (2008) Should agricultural policies encourage land sparing or wildlife-friendly farming? Front Ecol Environ 6:380–385

    Google Scholar 

  • Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–575

    CAS  PubMed  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M,  Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    CAS  PubMed  Google Scholar 

  • Giayetto O, Zak MR (eds) (2020) Bases ambientales para el ordenamiento territorial del espacio rural de la provincia de Córdoba. In press. Ed. Báez, Córdoba

  • González E, Salvo A, Defagó MT, Valladares G (2016) A moveable feast: insects moving at the forest-crop interface are affected by crop phenology and the amount of forest in the landscape. PLoS ONE 11:1–19

    Google Scholar 

  • Grau R, Kuemmerle T, Macchi L (2013) Beyond “land sparing versus land sharing”: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr Opin Environ Sustain 5:477–483

    Google Scholar 

  • Grau HR, Torres R, Gasparri NI, Blendinger PG, Marinaro S, Macchi L (2015) Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. J Arid Environ 123:40–46

    Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    CAS  PubMed  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–994

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) Elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Google Scholar 

  • Hodgson JA, Kunin WE, Thomas CD, Benton TG, Gabriel D (2010) Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale. Ecol Lett 13:1358–1367

    PubMed  Google Scholar 

  • Kamp J, Urazaliev R, Balmford A, Donald PF, Green RE, Lamb AJ, Phalan B (2015) Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J Appl Ecol 52:1578–1587

    Google Scholar 

  • Kass JM, Muscarella R, Vilela B, Aiello-lammens ME, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol Evol 9:1151–1156

    Google Scholar 

  • Kehoe L, Kuemmerle T, Meyer C, Levers C, Václavík T, Kreft H (2015) Global patterns of agricultural land-use intensity and vertebrate diversity. Divers Distrib 21:1308–1318

    Google Scholar 

  • Kehoe L, Romero-Muñoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017) Biodiversity at risk under future cropland expansion and intensification. Nat Ecol Evol 1:1129–1135

    PubMed  Google Scholar 

  • Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481

    PubMed  Google Scholar 

  • Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. Springer, New York

    Google Scholar 

  • Kremen C (2015) Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann N Y Acad Sci 1355:52–76

    PubMed  Google Scholar 

  • Kuemmerle T, Altrichter M, Baldi G, Cabido M, Camino M, Cuellar E, Cuellar RL, Decarre J, Díaz S, Gasparri I, Gavier-Pizarro G, Ginzburg R, Giordano AJ,  Grau HR, Jobbágy E, Leynaud G, Macchi L, Mastrangelo M, Mateucci SD,  Noss A, Paruelo J, Piquer-Rodríguez M, Romero-Muñoz A, Semper-Pascual A, Thompson J, Torrella S, Torres R, Volante JN, Yanosky A, Zak M (2017) Forest conservation: remember Gran Chaco. Science 355:465

    CAS  PubMed  Google Scholar 

  • Larkin DJ, Bruland GL, Zedle JB (2016) Heterogeneity theory and ecological restoration. In: Palmer MA, Zedler JB, Falk DA (eds) Foundations of restoration ecology. Island Press, Washington, pp 271–300

    Google Scholar 

  • Law EA, Meijaard E, Bryan BA, Mallawaarachchi T, Koh LP, Wilson KA (2015) Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. Biol Conserv 186:276–286

    Google Scholar 

  • Law EA, Meijaard E, Bryan BA, Mallawaarachchi T, Struebig MJ, Watts ME, Wilson KA (2017) Mixed policies give more options in multifunctional tropical forest landscapes. J Appl Ecol 54:51–60

    Google Scholar 

  • le Polain de Waroux Y, Baumann M, Gasparri NI, Gavier-Pizarro G, Godar J, Kuemmerle T, Müller R, Vázquez F, Volante JN, Meyfroidt P (2018) Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann Am Assoc Geogr 108:204–225

    Google Scholar 

  • Li H, Reynolds JF (1993) A new contagion index to quantify spatial patterns of landscapes. Landsc Ecol 8:155–162

    Google Scholar 

  • Macchi L, Grau HR, Zelaya PV, Marinaro S (2013) Trade-offs between land use intensity and avian biodiversity in the dry Chaco of Argentina: a tale of two gradients. Agric Ecosyst Environ 174:11–20

    Google Scholar 

  • Macchi L, Grau HR, Phalan B (2016) Agricultural production and bird conservation in complex landscapes of the dry Chaco. J Land Use Sci 11:188–202

    Google Scholar 

  • Macchi L, Deccare J, Goijman AP, Mastrangelo M, Blendinger PG, Gavier-Pizarro GI, Murray F, Piquer-Rodriguez M, Semper-Pascual A, Kuemmerle T (2020) Trade-offs between biodiversity and agriculture are moving targets in dynamic landscapes. J Appl Ecol. https://doi.org/10.1111/1365-2664.13699

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Google Scholar 

  • Marinaro S, Grau HR, Gasparri NI, Kuemmerle T, Baumann M (2017) Differences in production, carbon stocks and biodiversity outcomes of land tenure regimes in the Argentine Dry Chaco. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa625c

    Article  Google Scholar 

  • Martin E, Dainese M, Clough Y, Báldi A, Bommarco R, Gagic V, Garratt MPD, Holzschuh A, Kleijn D, Kovács‐Hostyánszki A, Marini L, Potts SG, Smith HG, Hassan DA, Albrecht M, Andersson GKS, Asís JD, Aviron S, Balzan MV, Baños‐Picón L, Bartomeus I, Batáry P, Burel F, Caballero-López B, Concepción ED, Coudrain V, Dänhardt J, Diaz M, Diekötter T, Dormann CF, Duflot R, Entling MH, Farwig N, Fischer C, Frank T, Garibaldi LA, Hermann J, Herzog F, Inclán D, Jacot K, Jauker F, Jeanneret P, Kaiser M, Krauss J, Le Féon V, Marshall J, Moonen AC, Moreno G, Riedinger V, Rundlöf M, Rusch A, Scheper J, Schneider G, Schüepp C, Stutz S, Sutter L, Tamburini G, Thies C, Tormos J, Tscharntke T, Tschumi M, Uzman D, Wagner C, Zubair-Anjum M, Steffan‐Dewenter I (2019) The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol Lett 22:1083–1094

    PubMed  Google Scholar 

  • Mastrangelo M, Gavin M (2012) Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina. Conserv Biol 26:1040–1051

    PubMed  Google Scholar 

  • Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145

    CAS  PubMed  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823

    Google Scholar 

  • Meyfroidt P, Carlson KM, Fagan ME, Gutiérrez-Vélez VH, Macedo MN, Curran LM, Defries RS, Dyer GA, Gibbs HK, Lambin EF, Morton DC, Robiglio V (2014) Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ Res Lett. https://doi.org/10.1088/1748-9326/9/7/074012

    Article  Google Scholar 

  • Morán-Ordóñez A, Whitehead AL, Luck GW,  Cook GD, Maggini R, Fitzsimons JA, Wintle BA (2017) Analysis of trade-offs between biodiversity, carbon farming and agricultural development in northern Australia reveals the benefits of strategic planning. Conserv Lett 10:94–104

    Google Scholar 

  • Moreira EF, Boscolo D, Viana BF (2015) Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10:1–19

    Google Scholar 

  • Morello J, Pengue W, Rodriguez A (2005) Un siglo de cambios de diseño del paisaje: el Chaco Argentino. In: Primeras Jornadas Argentinas de Ecología del Paisaje, pp 1–31

  • Navas Panadero A (2010) Importancia de los sistemas silvopastoriles en la reducción del estrés calórico en sistemas de producción ganadera tropical. Rev Med Vet (Bogota) 19:113–122

    Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, MacE GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    CAS  PubMed  Google Scholar 

  • Nicholson CC, Koh I, Richardson LL, Beauchemin A, Ricketts TH (2017) Farm and landscape factors interact to affect the supply of pollination services. Agric Ecosyst Environ 250:113–122

    Google Scholar 

  • Nolte C, Gobbi B, le Polain de Waroux Y, Piquer-Rodríguez M, Butsic V, Lambin EF (2017) Decentralized land use zoning reduces large-scale deforestation in a major agricultural frontier. Ecol Econ 136:30–40

    Google Scholar 

  • Nori J, Torres R, Lescano JN, Cordier JM, Periago ME, Baldo D (2016) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Divers Distrib 22:1212–1219

    Google Scholar 

  • Núñez-Regueiro MM, Branch L, Fletcher RJ, Marás GA, Derlindati E, Tálamo A (2015) Spatial patterns of mammal occurrence in forest strips surrounded by agricultural crops of the Chaco region, Argentina. Biol Conserv 187:19–26

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Google Scholar 

  • Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci 107:5786–5791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291

    CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson R (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Google Scholar 

  • Pineda E, Lobo J (2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J Anim Ecol 78:182–190

    PubMed  Google Scholar 

  • Powers JS, Feng X, Sanchez-Azofeifa A, Medvigy D (2018) Focus on tropical dry forest ecosystems and ecosystem services in the face of global change. Environ Res Lett 13:090201

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Ramankutty N, Rhemtulla J (2013) Land sparing or land sharing: context dependent. Front Ecol Environ 11:178

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:1–19

    Google Scholar 

  • Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M, Bommarco R (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ 221:198–204

    Google Scholar 

  • Semper-Pascual A, Macchi L, Sabatini FM, Decarre J, Baumann M, Blendinger PG, Gómez-Valencia B, Mastrangelo ME, Kuemmerle T (2018) Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco. J Appl Ecol 55:1218–1229

    Google Scholar 

  • Smil V (2013) Should we eat meat? Evolution and consequences of modern carnivory. Wiley-Blackwell, UK

    Google Scholar 

  • Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Conservation targets at multiple spatial scales. Trends Ecol Evol 31:67–80

    PubMed  Google Scholar 

  • Soyatech (2010) Soya & Oilseed Bluebook. Universidad de Wisconsin, Madison

    Google Scholar 

  • Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40:98–108

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrella SA, Piquer-Rodríguez M, Levers C, Ginzburg R, Gavier-Pizarro G, Kuemmerle T (2018) Multiscale spatial planning to maintain forest connectivity in the Argentine Chaco in the face of deforestation. Ecol Soc 23:37

    Google Scholar 

  • Torres R, Gasparri NI, Blendinger PG, Grau HR (2014) Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: a hierarchical integrative multi-taxa study. Reg Environ Chang 14:1549–1561

    Google Scholar 

  • Trillo C, Colantonio S, Galetto L (2014) Perceptions and use of native forests in the arid chaco of Córdoba, Argentina. Ethnobot Res Appl 12:497–510

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Google Scholar 

  • Turner BL, Janetos AC, Verburg PH, Murray A (2013) Land system architecture: Using land systems to adapt and mitigate global environmental change. Glob Environ Chang 23:395–397

    Google Scholar 

  • USDA (2019) Food composition databases. https://ndb.nal.usda.gov/ndb/nutrients. Accessed 1 Jan 2019

  • Volante JN, Seghezzo L (2017) Can’t see the forest for the trees: can declining deforestation trends in the Argentinian Chaco region be ascribed to efficient law enforcement? Ecol Econ 146:408–413

    Google Scholar 

  • Volante JN, Mosciaro MJ, Gavier-Pizarro GI, Paruelo JM (2016) Agricultural expansion in the Semiarid Chaco: poorly selective contagious advance. Land Use Policy 55:154–165

    Google Scholar 

  • von Wehrden H, Abson DJ, Beckmann M, Cord AF, Klotz S, Seppelt R (2014) Realigning the land-sharing/land-sparing debate to match conservation needs: considering diversity scales and land-use history. Landsc Ecol 29:941–948

    Google Scholar 

  • Wesz VJ (2016) Strategies and hybrid dynamics of soy transnational companies in the Southern Cone. J Peasant Stud 43:286–312

    Google Scholar 

  • Williams DR, Alvarado F, Green RE, Manica A, Phalan B, Balmford A (2017) Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Glob Chang Biol 23:5260–5272

    PubMed  Google Scholar 

  • Xiao Y, Li X, Cao Y, Dong M (2016) The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecol 217:857–868

    Google Scholar 

  • Zabel F, Delzeit R, Schneider JM, Seppelt R, Mauser W, Václavík T (2019) Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat Commun 10:2844

    PubMed  PubMed Central  Google Scholar 

  • Zak MR, Cabido M, Cáceres D, Díaz S (2008) What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ Manag 42:181–189

    Google Scholar 

Download references

Acknowledgements

RT thanks the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba, Argentina for funding this research (SECyT-UNC, Res. 313-16, 455-2018 and 472-2018). TK gratefully acknowledges funding by the German Ministry of Education and Research (BMBF, project PASANOA, 031B0034A) and the German Research Foundation (DFG, project KU 2458/5-1). We thank L. Macchi for help with the agricultural intensity metrics. The constructive comments of three reviewers and associated editor Dr. Herzog greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Torres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, R., Kuemmerle, T. & Zak, M.R. Changes in agriculture-biodiversity trade-offs in relation to landscape context in the Argentine Chaco. Landscape Ecol 36, 703–719 (2021). https://doi.org/10.1007/s10980-020-01155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01155-w

Keywords

Navigation