Skip to main content

Advertisement

Log in

Effects of land use on population presence and genetic structure of an amphibian in an agricultural landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Species distributions are a function of an individual’s ability to disperse to and colonize habitat patches. These processes depend upon landscape configuration and composition.

Objectives

Using Blanchard’s cricket frogs (Acris blanchardi), we assessed which land cover types were predictive of (1) presence at three spatial scales (pond-shed, 500 and 2500 m) and (2) genetic structure. We predicted that forested, urban, and road land covers would negatively affect cricket frogs. We also predicted that agricultural, field, and aquatic land covers would positively affect cricket frogs.

Methods

We surveyed for cricket frogs at 28 sites in southwestern Ohio, USA to determine presence across different habitats and analyze genetic structure among populations. For our first objective, we examined if land use (crop, field, forest, and urban habitat) and landscape features (ponds, streams, and roads) explained presence; for our second objective, we assessed whether these land cover types explained genetic distance between populations.

Results

Land cover did not have a strong influence on cricket frog presence. However, multiple competing models suggested effects of roads, streams, and land use. We found genetic structuring: populations were grouped into five major clusters and nine finer-scale clusters. Highways were predictive of increased genetic distance.

Conclusions

By combining a focal-patch study with landscape genetics, our study suggests that major roads and waterways are key features affecting species distributions in agricultural landscapes. We demonstrate that cricket frogs may respond to landscape features at larger spatial scales, and that presence and movement may be affected by different environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angelone S, Kienast F, Holderegger R (2011) Where movement happens: scale-dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34:714–722

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22:1117–1129

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7

  • Beauclerc KB, Johnson B, White BN (2007) Characterization, multiplex conditions, and cross-species utility of tetranucleotide microsatellite loci for Blanchard’s cricket frog (Acris crepitans blanchardi). Mol Ecol Notes 7:1338–1341

    Article  CAS  Google Scholar 

  • Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Bishop CA, Mahony NA, Struger J, Ng P, Petitt KE (1999) Anuran development, density and diversity in relation to agricultural activity in the Holland River watershed, Ontario, Canada (1990–1992). Environ Monit Assess 57:21–43

    Article  CAS  Google Scholar 

  • Céréghino R, Ruggiero A, Marty P, Angélibert S (2008) Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a south-western French agricultural landscape. Hydrobiologia 597:43–51

    Article  Google Scholar 

  • Chetkiewicz CB, Cassady C, Clair S, Boyce MS (2006) Corridors for conservation: integrating pattern and process. Annu Rev Ecol Evol Syst 37:317–342

    Article  Google Scholar 

  • Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372

    Article  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makawewich CA, Stenzler LM, Lovette IJ (2008a) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens). Mol Ecol 17:1685–1701

    Article  CAS  PubMed  Google Scholar 

  • Coulon A, Morellet N, Goulard M, Bargnelutti B, Angivault J, Hewison AJM (2008b) Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landscape Ecol 23:603–614

    Article  Google Scholar 

  • Dahl TE (1990) Wetlands losses in the United States 1780’s to 1980’s. U.S. Department of the Interior, Fish and Wildlife Service, Washington DC

    Google Scholar 

  • Davis J (2009) Ohio Frog and Toad Survey. http://www.ohioamphibians.com/frogs/callsurvey/#materials_methods

  • Denoël M, Lehmann A (2006) Multi-scale effect of landscape processes and habitat quality on newt abundance: implications for conservation. Biol Conserv 130:495–504

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc B Biol Sci 268:25–29

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Leveque C, Naiman R, Prieur-Richard A, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O (2008) An R2 statistic for fixed effects in the linear mixed model. Stat Med 27:6137–6157

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Field RH, Benke S, Bádonyi K, Bradbury RB (2007) Influence of conservation tillage on winter bird use of arable fields in Hungary. Agric Ecosyst Environ 120:399–404

    Article  Google Scholar 

  • Fisher-Reid MC, Engstrom TN, Kuczynski CA, Stephens PR, Wiens JJ (2013) Parapatric divergence of sympatric morphs in a salamander: incipient speciation on Long Island? Mol Ecol 22:4681–4694

    Article  PubMed  Google Scholar 

  • Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore J, Moyers BT, Renaut S, Rennison DJ, Veen T, Vines TH (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Mol Ecol 21:4925–4930

    Article  PubMed  Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663

    Article  PubMed  Google Scholar 

  • Goudet J (1995) Fstat version 1.2: a computer program to calculate Fstatistics. J Hered 86(6):485–486

    Google Scholar 

  • Gray RH (1971) Fall activity and overwintering of the cricket frog (Acris crepitans) in Central Illinois. Copeia 1971:748–750

    Article  Google Scholar 

  • Gray RH, Brown LE, Blackburn L (2005) Acris creptians Baird 1854(b): Northern cricket frog. In: Lannoo M (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, pp 441–443

    Google Scholar 

  • Halekoh U, Højsgaard S (2014) A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J Stat Softw 59:1–30

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–48

    Article  CAS  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531

    Article  Google Scholar 

  • Holt RD, Keitt TH, Lewis MA, Maurer A, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108:18–27

    Article  Google Scholar 

  • Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J (2007) Completion of the 2001 national land cover database for the Conterminous United States. Photogramm Eng Remote Sens 73:337–341

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  CAS  PubMed  Google Scholar 

  • Koen EL, Bowman J, Garroway CJ, Mills SC, Wilson PJ (2012a) Landscape resistance and American marten gene flow. Landscape Ecol 27:29–43

    Article  Google Scholar 

  • Koen EL, Bowman J, Walpole AA (2012b) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Resour 12:686–696

    Article  PubMed  Google Scholar 

  • Lehtinen RM, MacDonald MC (2011) Live fast, die young? A six-year field study of longevity and survivorship in Blanchard’s cricket frog (Acris crepitans blanchardi). Herpetol Rev 42:504–507

    Google Scholar 

  • Lehtinen RM, Skinner AA (2006) The enigmatic decline of Blachard’s cricket frog (Acris crepitans blanchardi): a test of the habitat acidification hypothesis. Copeia 2006:159–167

    Article  Google Scholar 

  • Lehtinen RM, Witter JR (2014) Detecting frogs and detecting declines: an examination of occupancy and turnover patterns at the range edge of Blanchard’s cricket frog (Acris blanchardi). Herpetol Conserv Biol 9:502–515

    Google Scholar 

  • Leidner AK, Haddad NM (2011) Combining measures of dispersal to identify conservation strategies in fragmented landscapes. Conserv Biol 25:1022–1031

    Article  PubMed  Google Scholar 

  • Lesbarrères D, Fahrig L (2012) Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends Ecol Evol 27:374–380

    Article  PubMed  Google Scholar 

  • Loos J, Kuussaari M, Ekroos J, Hanspach J, Fust P, Jackon L, Fischer J (2014) Changes in butterfly movements along a gradient of land use in farmlands of Transylvania (Romania). Landscape Ecol 30:625–635

    Article  Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30:1405–1420

    Article  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983

    Article  CAS  PubMed  Google Scholar 

  • Mazerolle MJ (2015) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-3

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    Article  PubMed  Google Scholar 

  • McRae B, Dickson B, Keitt T, Shah V (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Nickerson C, Ebel R, Borchers A, Carriazo F (2011) Major uses of land in the United States, 2007. EIB-89, US Dep Agric Econ Res Serv 1–57

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope SE, Fahrig L, Merriam HG (2000) Landscape complementation and metapopulation effects on leopard frog populations. Ecology 81:2498–2508

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puglis HJ, Boone MD (2012) Effects of terrestrial buffer zones on Amphibians on golf courses. PLoS ONE 7(6):e39590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Purrenhage JL, Niewiarowski PH, Moore FBG (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:1–19

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reding DM, Cushman SA, Gosselink TE, Clark WR (2013) Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landscape Ecol 28:471–486

    Article  Google Scholar 

  • Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Row JR, Blouin-Demers G, Lougheed SC (2010) Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape. Mol Ecol 19:5157–5171

    Article  PubMed  Google Scholar 

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17:1219–1228

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation in amphibian and paradigm ecology are all amphibian conservation: populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Southeast GAP Analysis Project. 2014. http://www.basic.ncsu.edu/segap/. U.S. Geological Survey—Biological Resources Division

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Stevens VM, Verkenne C, Vandewoestijne S, Wesselingh RA, Baguette M (2006) Gene flow and functional connectivity in the natterjack toad. Mol Ecol 15:2333–2344

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Thornton DH, Branch LC, Sunquist ME (2011) The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Landscape Ecol 26:7–18

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Trenham PC, Koenig WD, Mossman MJ, Stark SL, Jagger LA (2003) Regional dynamics of wetland-breeding frogs and toads: turnover and synchrony. Ecol Appl 13:1522–1532

    Article  Google Scholar 

  • Trumbo DR, Burgett AA, Hopkins RL, Biro EG, Chase JM, Knouft JH (2012) Integrating local breeding pond, landcover, and climate factors in predicting amphibian distributions. Landscape Ecol 27:1183–1196

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vos CC, Stumpel AHP (1995) Comparison of habitat-isolation parameters in relation to fragmented distribution patterns in the tree frog (Hyla arborea). Landscape Ecol 11:203–214

    Article  Google Scholar 

  • Youngquist MB, Boone MD (2014) Movement of amphibians through agricultural landscapes: the role of habitat on edge permeability. Biol Conserv 175:148–155

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797

    Article  Google Scholar 

Download references

Acknowledgments

We thank Maarten van Strein and Valerie Peters for assistance with mixed model analyses; and Andrew McDermott and Paula Cimprich for helping to conduct surveys and collect tissue samples. Funding was provided by the U.S. Fish and Wildlife Service. All procedures were approved by Miami University (IACUC 827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa B. Youngquist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngquist, M.B., Inoue, K., Berg, D.J. et al. Effects of land use on population presence and genetic structure of an amphibian in an agricultural landscape. Landscape Ecol 32, 147–162 (2017). https://doi.org/10.1007/s10980-016-0438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0438-y

Keywords

Navigation