Skip to main content

Advertisement

Log in

Landscape variables associated with relative abundance of generalist mesopredators

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Increasing densities of generalist mesopredators are a major concern in the conservation of threatened prey species. Knowledge of landscape factors influencing mesopredator abundance is therefore of essential interest to conservation managers. Identification of landscape variables to measure mesopredator abundance necessitates application over a large area. Additionally, the method should be cost effective and applicable in different settings. In our study, we used feces counts to index the relative abundance of red foxes (Vulpes vulpes) in a densely forested mountain range, the Black Forest in Germany. Using a negative binomial regression, we found that landscape diversity and edge density best predicted differences in feces abundance, both showing a positive correlation with feces abundance. We used these results to predict relative red fox abundance for the entire Black Forest and correlated the results with the hunting bag statistic on the municipality level averaged over 11 years. The high correlation between these two independent measures of relative abundance confirmed our results and underlined the usefulness of feces counts to measure abundance of elusive species. The model approach we employed can be used to predict abundance of a wide range of species and regions by identifying factors that influence their abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildlife Soc Bull 29:1294–1297

    Google Scholar 

  • Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73:794–804

    Article  Google Scholar 

  • Bang P, Dahlström P, Haltenorth T (2005) Tierspuren—Fährten, Frassspuren, Losungen, Gewölle und andere. Verlag BLV, Munich

    Google Scholar 

  • Barea-Azcón J, Virgós E, Ballesteros-Duperón E, Moleón M, Chirosa M (2007) Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodivers Conserv 16:1213–1230

    Article  Google Scholar 

  • Bartoń K (2012) MuMIn: multi-model inference. R package version 1.7.2

  • Bartoń K, Zalewski A (2007) Winter severity limits red fox populations in Eurasia. Global Ecol Biogeogr 16:281–289

    Article  Google Scholar 

  • Beasley JC, Olson ZH, Dharmarajan G, Eagan TS, Rhodes OE (2011) Spatio-temporal variation in the demographic attributes of a generalist mesopredator. Landsc Ecol 26:937–950

    Article  Google Scholar 

  • Bellebaum J (2003) Bestandsentwicklung des Fuchses in Ostdeutschland vor und nach der Tollwutimpfung. Zeitschrift für Jagdwissenschaft 49:41–49

    Google Scholar 

  • Berger KMI, Gese EM (2007) Does interference competition with wolves limit the distribution and abundance of coyotes? J Anim Ecol 76:1075–1085

    Article  PubMed  Google Scholar 

  • Berger KM, Gese EM, Berger J (2008) Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn. Ecology 89:818–828

    Article  PubMed  Google Scholar 

  • Bino G, Dolev A, Yosha D, Guter A, King R, Saltz D, Kark S (2010) Abrupt spatial and numerical responses of overabundant foxes to a reduction in anthropogenic resources. J Appl Ecol 47:1262–1271

    Article  Google Scholar 

  • Braunisch V, Suchant R (2008) Using ecological forest site mapping for long-term habitat suitability assessments in wildlife conservation-demonstrated for capercaillie (Tetrao urogallus). For Ecol Manag 256:1209–1221

    Article  Google Scholar 

  • Breitenmoser U (1998) Large predators in the Alps: the fall and rise of man’s competitors. Biol Conserv 83:279–289

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

  • Constible JM, Chamberlain MJ, Leopold BD (2006) Relationships between landscape pattern and space use of three mammalian carnivores in Central Mississippi. Am Midl Nat 155:352–362

    Article  Google Scholar 

  • Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566

    Article  CAS  Google Scholar 

  • Dijak WD, Thompson FR (2000) Landscape and edge effects on the distribution of mammalian predators in Missouri. J Wildl Manag 64:209–216

    Article  Google Scholar 

  • Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecol Lett 10:197–206

    Article  PubMed  Google Scholar 

  • Fedriani JM, Fuller TK, Sauvajot RM (2001) Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in Southern California. Ecography 24:325–331

    Google Scholar 

  • Ferreira C, Paupério J, Alves PC (2010) The usefulness of field data and hunting statistics in the assessment of wild rabbit (Oryctolagus cuniculus) conservation status in Portugal. Wildl Res 37:223–229

    Article  Google Scholar 

  • Forchhammer MC, Asferg T (2000) Invading parasites cause a structural shift in red fox dynamics. Proc Biol Sci 267:779–786

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer MC, Stenseth NC, Post E, Landvatn R (1998) Population dynamics of Norwegian red deer: density-dependence and climatic variation. Proc Biol Sci 265:341–350

    Article  PubMed  CAS  Google Scholar 

  • Gauer J, Aldinger E (2005) Waldökologische Naturräume Deutschlands-Wuchsgebiete Schwarzwald und Baar-Wutach. Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung 43:281–288

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Güthlin D, Kröschel M, Küchenhoff H, Storch I (2012) Faecal sampling along trails: a questionable standard for estimating red fox Vulpes vulpes abundance. Wildl Biol 18:374–382

    Article  Google Scholar 

  • Harrison RL, Barr DJ, Dragoo JW (2002) A comparison of population survey techniques for swift foxes (Vulpes velox) in New Mexico. Am Midl Nat 148:320–337

    Article  Google Scholar 

  • Helldin JO, Liberg O, Glöersen G (2006) Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden—frequency and population effects. J Zool 270:657–663

    Article  Google Scholar 

  • Kaphegyi T (2002) Untersuchungen zum Sozialverhalten des Rotfuchses (Vulpes vulpes L.). Dissertation, University of Freiburg

  • Kays RW, Gompper ME, Ray JC (2008) Landscape ecology of eastern coyotes based on large-scale estimates of abundance. Ecol Appl 18:1014–1027

    Article  PubMed  Google Scholar 

  • Keuling O, Greiser G, Grauer A, Strauß E, Bartel-Steinbach M, Klein R, Wenzelides L, Winter A (2011) The German wildlife information system (WILD): population densities and den use of red foxes (Vulpes vulpes) and badgers (Meles meles) during 2003–2007 in Germany. Eur J Wildl Res 57:95–105

    Article  Google Scholar 

  • Kiner TV, Zaitsev VA (2010) Range structure in the red fox (Vulpes vulpes L.) in the forest zone of Eastern Europe. Contempor Probl Ecol 3:119–126

    Article  Google Scholar 

  • König A, Romig T (2010) Fox tapeworm Echinococcus multilocularis. Wildl Biol 16:258–266

    Article  Google Scholar 

  • Kurki S, Lindén H (1995) Forest fragmentation due to agriculture affects the reproductive success of ground-nesting black grouse Tetrao tetrix. Ecography 18:109–113

    Article  Google Scholar 

  • Kurki S, Nikula A, Helle P, Lindén H (1998) Abundances of red fox and pine marten in relation to the composition of boreal forest landscapes. J Anim Ecol 67:874–886

    Article  Google Scholar 

  • Kurki S, Nikula A, Helle P, Lindén H (2000) Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81:1985–1997

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

  • Mangas JG, Rodríguez-Estival J (2010) Logging and livestock influence the abundance of common mammal species in Mediterranean forested environments. For Ecol Manag 260:1274–1281

    Article  Google Scholar 

  • Mortelliti A, Boitani L (2008) Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landsc Ecol 23:285–298

    Article  Google Scholar 

  • Oehler JD, Litvaitis JA (1996) The role of spatial scale in understanding responses of medium-sized carnivores to forest fragmentation. Can J Zool 74:2070–2079

    Article  Google Scholar 

  • Pegel M (2001) Zur Bestandssituation des Dachses in Baden-Württemberg. WFS-Mitteilungen 1:1–4

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley-Interscience, New York

    Google Scholar 

  • Pita R, Mira A, Moreira F, Morgado R, Beja P (2009) Influence of landscape characteristics on carnivore diversity and abundance in Mediterranean farmland. Agric Ecosyst Environ 132:57–65

    Article  Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bio Sci 59:779–791

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, Austria

  • Rosalino LM, Macdonald DW, Santos-Reis M (2004) Spatial structure and land-cover use in a low-density Mediterranean population of Eurasian badgers. Can J Zool 82:1493–1502

    Article  Google Scholar 

  • Rosalino LM, Macdonald DW, Santos-Reis M (2005) Resource dispersion and badger population density in Mediterranean woodlands: is food, water or geology the limiting factor? Oikos 110:441–452

    Article  Google Scholar 

  • Rosalino LM, Santos M, Beier P, Santos-Reis M (2008) Eurasian badger habitat selection in Mediterranean environments: does scale really matter? Mamm Biol 73:189–198

    Google Scholar 

  • Rotem G, Berger H, King R, Kutiel PB, Saltz D (2011) The effect of anthropogenic resources on the space-use patterns of golden jackals. J Wildl Manag 75:132–136

    Article  Google Scholar 

  • Sadlier LM, Webbon CC, Baker PJ, Harris S (2004) Methods of monitoring red foxes (Vulpes vulpes L.) and badgers (Meles meles): are field signs the answer? Mamm Rev 34:75–98

    Article  Google Scholar 

  • Selas V, Vik JO (2006) Possible impact of snow depth and ungulate carcasses on red fox (Vulpes vulpes) populations in Norway, 1897–1976. J Zool 269:299–308

    Article  Google Scholar 

  • Sidorovich VE, Sidorovich AA, Izotova IV (2006) Variations in the diet and population density of the red fox (Vulpes vulpes) in the mixed woodlands of northern Belarus. Mamm Biol 71:74–89

    Google Scholar 

  • Sidorovich VE, Tikhomirova LL, Solovej IA (2007) Distribution of rodents and their predators in transitional mixed woodland in relation to exposure of terrestrial vegetation in northern Belarus. Acta Zoologica Lituanica 17:323–332

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Soulé ME, Bolger DT, Alberts AC, Wright J, Sorice M, Hill S (1988) Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv Biol 2:75–92

    Article  Google Scholar 

  • Storch I, Woitke E, Krieger S (2005) Landscape-scale edge effect in predation risk in forest-farmland mosaics of central Europe. Landsc Ecol 20:927–940

    Article  Google Scholar 

  • Thompson CM, Gese EM (2007) Food webs and intraguild predation: community interactions of a native mesocarnivore. Ecology 88:334–346

    Article  PubMed  Google Scholar 

  • Virgós E, Tellería JL, Santos T (2002) A comparison on the response to forest fragmentation by medium-sized Iberian carnivores in central Spain. Biodivers Conserv 11:1063–1079

    Article  Google Scholar 

  • Zalewski A, Jędrzejewski W (2006) Spatial organisation and dynamics of the pine marten (Martes martes) population in Białowieza Forest (E Poland) compared with other European woodlands. Ecography 29:31–43

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mareike Brix, Britta Dingeldein, Dorothee März, Yitagesu Telke and Felix Wildi for helping us with searching line transects for fox feces. We thank Elizabeth Glatthaar and John A. Bissonette for providing language help and for proof reading the article, the coordinating editor and two anonymous reviewers for their helpful comments and the Regierungspräsidium Freiburg for their cooperation during field work. This work was funded by the Ministerium für Ländlichen Raum, Ernährung und Verbraucherschutz Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Güthlin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güthlin, D., Storch, I. & Küchenhoff, H. Landscape variables associated with relative abundance of generalist mesopredators. Landscape Ecol 28, 1687–1696 (2013). https://doi.org/10.1007/s10980-013-9911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9911-z

Keywords

Navigation