Skip to main content

Advertisement

Log in

A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Existing methods for connectivity analysis still encounter difficulties in explaining functional relationships between network structure and ecological patterns over larger territories or complex structures like dendritic river networks. We propose a method that addresses the problem of scale and resolution in the connectivity analysis of dendritic network structures, illustrated here for the re-colonization of the French Loire river basin by the European otter. The ecological niche factor approach is applied to infer favourable habitat in the river network based on large scale data of land use and hydro-morphology of river segments for the entire river basin. These analyses identified the stressors to the riparian zone of channel straightening, urbanisation and forest fragmentation as the principal factors explaining otter occurrence. Using this estimate of habitat favourability, we used the Integral Index of Connectivity to quantify habitat availability and connectivity in the dendritic river network. When we calculate the integral index of connectivity over different spatial extents by constraining network distances, the scale-sensitivity of the network’s connectivity emerges. Accounting for high mobility by entering larger network distances in the analysis identifies conservation networks and priorities mainly in downstream parts of the river basin, whereas with smaller network distances, more restricted high quality areas in central and upstream parts are highlighted. The presented approach performed better than distribution modelling approaches in explaining species occurrence over the river network and confirms the crucial aspect of connectivity in otter re-colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Ann Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Arponen A, Lehtomäki J, Leppänen J, Tomppo E, Moilanen A (2012) Effects of connectivity and spatial resolution of analyses on conservation prioritization across large extents. Conserv Biol 26:294–304

    Article  PubMed  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22:1117–1129

    Article  Google Scholar 

  • Barbosa AM, Real R, Marquez AL, Rendon MA (2001) Spatial, environmental and human influences on the distribution of otter (Lutra lutra) in the Spanish provinces. Divers Distrib 7:137–144

    Article  Google Scholar 

  • Barbosa AM, Real R, Olivero J, Vargas JM (2003) Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biol Conserv 114:377–387

    Article  Google Scholar 

  • Basille M, Herfindal I, Santin-Janin H, Linnell JDC, Odden J, Andersen R, Hogda KA, Gaillard J-M (2009) What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people? Ecography 32:683–691

    Article  Google Scholar 

  • Beier P, Spencer W, Baldwin RF, Mcrae BH (2011) Toward best practices for developing regional connectivity maps. Conserv Biol 25:879–892

    Article  PubMed  Google Scholar 

  • Carranza ML, D’alessandro E, Saura S, Loy A (2012) Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy. Landscape Ecol 27:281–290

    Article  Google Scholar 

  • Carrara F, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2012) Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proc Natl Acad Sci. doi:10.1073/pnas.1119651109

    PubMed  Google Scholar 

  • Carroll C, Mcrae BH, Brookes A (2012) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv Biol 26:78–87

    Article  PubMed  Google Scholar 

  • Chandesris A, Mengin N, Malavoi JR, Wasson JG, Souchon Y (2008) SYRAH-CE: SYstème Relationnel d’Audit de l’Hydromorphologie des Cours d’Eau A relational, multi-scale system for auditing the hydro-morphology of running waters: diagnostic tool to help the WFD implementation in France. In: Gumiero B, Rinaldi M, Fokkens B (eds) Proceedings of the 4th international conference on river restoration, Venice, ITA, 16–21 June 2008

  • Chetkiewicz C, St. Clair C, Boyce M (2006) Corridors for conservation: integrating pattern and process. Ann Rev Ecol Evol Syst 37:317–342

    Article  Google Scholar 

  • Clavero M, Hermoso V, Brotons L, Delibes M (2010) Natural, human and spatial constraints to expanding populations of otters in the Iberian Peninsula. J Biogeogr 37:2345–2357

    Article  Google Scholar 

  • Cortés Y, Fernández-Salvador R, García FJ, Virgós E, Llorente M (1998) Changes in otter Lutra lutra distribution in Central Spain in the 1964–1995 period. Biol Conserv 86:179–183

    Article  Google Scholar 

  • Eros T, Schmera D, Schick RS (2011) Network thinking in riverscape conservation—A graph-based approach. Biol Conserv 144:184–192

    Article  Google Scholar 

  • Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–3249

    Article  Google Scholar 

  • Fisher SG (1997) Creativity, idea generation, and the functional morphology of streams. J N Am Benthol Soc 16:305–318

    Article  Google Scholar 

  • Ganio LM, Torgersen CE, Gresswell RE (2005) A geostatistical approach for describing spatial pattern in stream networks. Front Ecol Environ 3:138–144

    Article  Google Scholar 

  • Godsoe W, Harmon LJ (2012) How do species interactions affect species distribution models? Ecography 35:811–820

    Article  Google Scholar 

  • Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175

    Article  Google Scholar 

  • Hannah LEE (2011) Climate change, connectivity, and conservation success. Conserv Biol 25:1139–1142

    Article  PubMed  Google Scholar 

  • Hermoso V, Linke S, Prenda J, Possingham HP (2011) Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshw Biol 56:57–70

    Article  Google Scholar 

  • Hermoso V, Kennard MJ, Linke S (2012) Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Divers Distrib 18:448–458

    Article  Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2001) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Janssens X, Fontaine MC, Michaux JR, Libois R, De Kermabon J, Defourny P, Baret PV (2008) Genetic pattern of the recent recovery of European otters in southern France. Ecography 31:176–186

    Article  Google Scholar 

  • Jordán F, Báldi A, Orci KM, Rácz I, Varga Z (2003) Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landscape Ecol 18:83–92

    Article  Google Scholar 

  • Kruuk H (2006) Otters, ecology, behaviour and conservation. Oxford University Press, New York

    Google Scholar 

  • Laita A, Kotiaho JS, Monkkonen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity? Landscape Ecol 26:951–967

    Article  Google Scholar 

  • Lemarchand C, Amblard C, Souchon Y, Berny P (2007) Organochlorine compounds (pesticides and PCBs) in scats of the european otter (Lutra lutra) from an actual expanding population in central france. Water Air Soil Pollut 186:55–62

    Article  CAS  Google Scholar 

  • Lodé T (1993) The decline of otter Lutra lutra populations in the region of the pays de loire, Western France. Biol Conserv 65:9–13

    Article  Google Scholar 

  • Loy A, Carranza ML, Cianfrani C, D’Alessandro E, Bonesi L (2009) Otter Lutra lutra population expansion: assessing habitat suitability and connectivity in southern Italy. Folia Zool 58:309–326

    Google Scholar 

  • MacDonald S, Mason C (1983) The otter Lutra lutra in Southern Italy. Biol Conserv 25:95–101

    Article  Google Scholar 

  • Mason CF, Macdonald S (1987) Otters: ecology and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Mccarthy KP, Fletcher RJ Jr, Rota CT, Hutto RL (2012) Predicting species distributions from samples collected along roadsides. Conserv Biol 26:68–77

    Article  PubMed  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Moilanen A, Hanski I (2001) On the use of connectivity measures in spatial ecology. Oikos 95:147–151

    Article  Google Scholar 

  • Moilanen A, Leathwick J, Elith J (2008) A method for spatial freshwater conservation prioritization. Freshw Biol 53:577–592

    Article  Google Scholar 

  • Morzillo A, Ferrari J, Liu J (2011) An integration of habitat evaluation, individual based modeling, and graph theory for a potential black bear population recovery in southeastern Texas, USA. Landscape Ecol 26:69–81

    Article  Google Scholar 

  • Ottaviani D, Panzacchi M, Lasinio GJ, Genovesi P, Boitani L (2009) Modelling semi-aquatic vertebrates’ distribution at the drainage basin scale: the case of the otter Lutra lutra in Italy. Ecol Model 220:111–121

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecol 21:959–967

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2008) Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur J Forest Res 127:23–31

    Article  Google Scholar 

  • Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecol 24:253–266

    Article  Google Scholar 

  • Robitaille JF, Laurance S (2002) Otter, Lutra lutra, occurence in Europe and in France in relation to landscape characteristics. Anim Conserv 5:337–344

    Article  Google Scholar 

  • Robles H, Ciudad C (2012) Influence of habitat quality, population size, patch size, and connectivity on patch-occupancy dynamics of the middle spotted woodpecker. Conserv Biol 26:284–293

    Article  PubMed  Google Scholar 

  • Rouget M, Cowling RM, Lombard AT, Knight AT, Kerley GIH (2006) Designing large-scale conservation corridors for pattern and process. Conserv Biol 20:549–561

    Article  PubMed  Google Scholar 

  • Ruiz-Olmo J, Saavedra D, Jiménez J (2001) Testing the surveys and visual and track censuses of Eurasian otters (Lutra lutra). J Zool 253:359–369

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537

    Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity

  • Schwenk WS, Donovan TM (2011) A multispecies framework for landscape conservation planning. Conserv Biol 25:1010–1021

    Article  PubMed  Google Scholar 

  • Sulkava R, Sulkava P, Sulkava P (2007) Source and sink dynamics of density-dependent otter (Lutra lutra) populations in rivers of central Finland. Oecologia 153:579–588

    Article  PubMed  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib 13:397–405

    Article  Google Scholar 

  • Urban DL (2005) Modeling ecological processes across scales. Ecology 86:1996–2006

    Article  Google Scholar 

  • Urban DL, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Van Teeffelen AJA, Cabeza M, Moilanen A (2006) Connectivity, probabilities and persistence: comparing reserve selection strategies. Biodiv and Conserv 15:899–919

    Article  Google Scholar 

  • Varray S (2011) Etude des continuités écologiques du castor et de la loutre sur le bassin de la Loire: analyse de la franchissabilité des obstacles à l’écoulement. ONCFS, Paris

    Google Scholar 

  • Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  • Williams P, Hannah L, Andelman S, Midgley G, Araujo M, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape proteaceae. Conserv Biol 19:1063–1074

    Article  Google Scholar 

Download references

Acknowledgments

This work was only possible thanks to the strong observation effort of the volunteers of the Loire Basin Mammal Network and the agents of the National Wildlife Office (ONCFS) since 1985. Nadine Nogaret of the Regional Nature Parc of the Livradois-Forez provided detailed information on the species’ re-colonization. The river data collection in the hydro-morphology audit system SYRAH is financed by the French Ministry of Research and the Ministry of Environment and Sustainable Development. We are indebted to Sandrine Ruette (ONCFS) and Charles Lemarchand (University Clermond-Ferrand) for their constructive comments on the analysis approach and interpretation of the species’ inventories. The editor and two anonymous reviewers offered useful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Van Looy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Looy, K., Cavillon, C., Tormos, T. et al. A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks. Landscape Ecol 28, 1239–1249 (2013). https://doi.org/10.1007/s10980-013-9869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9869-x

Keywords

Navigation