Skip to main content
Log in

Evaluating the effects of upstream lakes and wetlands on lake phosphorus concentrations using a spatially-explicit model

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Lake phosphorus concentrations are strongly influenced by the surrounding landscape that generates phosphorus loads and water inflow to lakes, and the physical characteristics of the lake that determine the fate of these inputs. In addition, the presence, connectivity, and configuration of upstream lakes and wetlands likely affect downstream lake phosphorus concentrations. These freshwater landscape features have only sometimes been incorporated into phosphorus loading models, perhaps because of the need for spatially-explicit approaches that account for their location and hydrologic configuration. In this paper, we developed a lake phosphorus concentration model that includes three modules to estimate phosphorus loading, water inflow, and phosphorus retention, respectively. In modeling phosphorus loading and water inflow, we used a spatially-explicit approach to address their export at sources and their attenuation along flow-paths. We used 161 headwater lakes for model calibration and 28 headwater lakes for model validation. Using the calibrated model, we examined the effects of upstream lakes and wetlands on downstream lake phosphorus concentrations. To examine the effects of upstream lakes, we compared the output of the calibrated model for three additional datasets (208 lakes in total) that contained increasing area of upstream lakes. To examine the effect of upstream wetlands, we used the calibrated model to compare flow-path cell series that contained wetlands and those that did not. In addition, we simulated catchments in which all wetlands were converted to forest and recalculated downstream lake phosphorus concentrations. We found that upstream lakes decreased the phosphorus concentrations in downstream lakes; and, counter-intuitively, we found that wetlands increased phosphorus concentrations in most downstream lakes. The latter result was due to the fact that although wetlands reduced phosphorus loads to downstream lakes, they also reduced water inflow to downstream lakes and thus increased the phosphorus concentration of inflows to lakes. Our results suggest that when modeling lake phosphorus concentrations, freshwater features of the landscape and their spatial arrangement should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Zreig M, Rudra RP, Whiteley HR, Lalonde MN, Kaushik NK (2003) Phosphorus removal in vegetated filter strips. J Environ Qual 32:613–619

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren I, Frisk T, Kamp-Nielsen L (1988) Empirical and theoretical models of phosphorus loading, retention and concentration vs. lake trophic state. Hydrobiologia 170:285–303

    Article  CAS  Google Scholar 

  • Alexander RB, Elliott AH, Shankar U, McBride GB (2002) Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand. Water Resour Res 38:1268. doi:10.1029/2001WR000878

    Article  Google Scholar 

  • Baker LA (1992) Introduction to nonpoint source pollution in the United States and propects for wetland use. Ecol Eng 1:1–26

    Article  Google Scholar 

  • Baker ME, Weller DE, Jordan TE (2006) Improved methods for quantifying potential nutrient interception by riparian buffers. Landscape Ecol 21:1327–1345

    Article  Google Scholar 

  • Beckert KA, Fisher TR, O’Neil JM, Jesien RV (2011) Characterization and comparison of stream nutrients, land use, and loading patterns in Maryland coastal bay watersheds. Water Air Soil Pollut 221:255–273

    Article  CAS  Google Scholar 

  • Bedford BL, Walbridge MR, Aldous A (1999) Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169

    Article  Google Scholar 

  • Borah DK, Bera M (2003) Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Trans ASAE 46:1553–1566

    Google Scholar 

  • Borah DK, Bera M (2004) Watershed-scale hydrologic and nonpoint-source pollution models: review of applications. Trans ASAE 47:789–803

    CAS  Google Scholar 

  • Bouraoui F (1994) Development of a continuous, physically-based, distributed parameter, nonpoint source model. Virginia Polytechnic Institute and State University, Dissertation

    Google Scholar 

  • Bowden WB (1987) The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348

    Article  CAS  Google Scholar 

  • Brett MT, Benjamin MM (2008) A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw Biol 53:194–211

    CAS  Google Scholar 

  • Brett MT, Arhonditsis GB, Mueller SE, Hartley DM, Frodge JD, Funke DE (2005) Non-point-source impacts on stream nutrient concentrations along a forest to urban gradient. Environ Manage 35:330–342

    Article  PubMed  Google Scholar 

  • Breuer L, Vaché KB, Julich S, Frede H-G (2008) Current concepts in nitrogen dynamics for mesoscale catchments. Hydrol Sci J 53:1059–1074

    Article  CAS  Google Scholar 

  • Bryhn AC, Håkanson L (2007) A comparison of predictive phosphorus load-concentration models for lakes. Ecosystems 10:1084–1099

    Article  CAS  Google Scholar 

  • Canham CD, Pace ML, Papaik MJ, Primack AGB, Roy KM, Maranger RJ, Curran RP, Spada DM (2004) A spatially-explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol Appl 14:839–854

    Article  Google Scholar 

  • Cifaldi RL, Allan JD, Duh JD, Brown DG (2004) Spatial patterns in land cover of exurbanizing watersheds in southeastern Michigan. Landsc Urban Plan 66:107–123

    Article  Google Scholar 

  • Detenbeck NE, Johnston CA, Niemi GJ (1993) Wetland effects on lake water quality in the Minneapolis/St. Paul metropolitan area. Landscape Ecol 8:39–61

    Article  Google Scholar 

  • Detenbeck NE, Taylor DL, Lima A, Hagley C (1996) Temporal and spatial variability in water quality of wetlands in the Minneapolis/St. Paul, MN metropolitan area: implications for monitoring strategies and designs. Environ Monit Assess 40:11–40

    Article  CAS  Google Scholar 

  • Devito KJ (1997) Flow reversals in peatlands influenced by local groundwater systems. Hydrol Process 11:103–110

    Article  Google Scholar 

  • Devito KJ, Creed IF, Rothwell RL, Prepas EE (2000) Landscape controls on phosphorus loading to boreal lakes: implications for the potential impacts of forest harvesting. Can J Fish Aquat Sci 57:1977–1984

    Article  CAS  Google Scholar 

  • Diebel MW, Maxted JT, Robertson DM, Han S, Vander Zanden MJ (2009) Landscape planning for agricultural nonpoint source pollution reduction III: assessing phosphorus and sediment reduction potential. Environ Manage 43:69–83

    Article  PubMed  Google Scholar 

  • Fergus CE, Soranno PA, Spence Cheruvelil K, Bremigan MT (2011) Multiscale landscape and wetland drivers of lake total phosphorus and color. Limnol Oceanogr 56:2127–2146

    Article  CAS  Google Scholar 

  • Fisher J, Acreman MC (2004) Wetland nutrient removal: a review of the evidence. Hydrol Earth Syst Sci 8:673–685

    Article  CAS  Google Scholar 

  • Fuller LM, Minnerick RJ (2008) State and regional water quality characteristics and trophic conditions of MI’s inland lakes, 2001–2005. Scientific Investigations Report 2008–5188, U.S. Geological Survey

  • Gémesi Z, Downing JA, Cruse RM, Anderson PF (2011) Effects of watershed configuration and composition on downstream lake water quality. J Environ Qual 40:517–527

    Article  PubMed  Google Scholar 

  • Gergel SE (2005) Spatial and non-spatial factors: when do they affect landscape indicators of watershed loading? Landscape Ecol 20:177–189

    Article  Google Scholar 

  • Giasson E, Bryant RB, DeGloria SD (2002) GIS-based spatial indices for identification of potential phosphorous export at watershed scale. J Soil Water Conserv 57:373–381

    Google Scholar 

  • Goodman KJ, Baker MA, Wurtsbaugh WA (2010) Mountain lakes increase organic matter decomposition rates in streams. J N Am Benthol Soc 29:521–529

    Article  Google Scholar 

  • Grayson RB, Moore ID, McMahon TA (1992) Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour Res 26:2659–2666

    Article  Google Scholar 

  • Hunsaker CT, Levine DA (1995) Hierarchical approaches to the study of water quality in rivers. Bioscience 45:193–203

    Article  Google Scholar 

  • Imboden DM (1974) Phosphorus model of lake eutrophication. Limnol Oceanogr 19:297–304

    Article  CAS  Google Scholar 

  • Johnson GD, Myers WL, Patil GP (2001) Predictability of surface water pollution loading in Pennsylvania using watershed-based landscape measurements. J Am Water Resour Assoc 37:821–835

    Article  Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit Rev Environ Sci Technol 21:491–565

    Article  Google Scholar 

  • Jones KB, Neale AC, Nash MS, Van Remortel RD, Wickham JD, Riitters KH, O’Neill RV (2001) Predicting nutrient and sediment loadings to streams from landscape metrics: a multiple watershed study from the United States Mid-Atlantic Region. Landscape Ecol 16:301–312

    Article  Google Scholar 

  • Kadlec RH, Bevis FB (1990) Wetlands and wastewater: Kinross, Michigan. Wetlands 10:77–92

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  PubMed  CAS  Google Scholar 

  • Levine DA (1992) A geographic information system approach to modeling nutrient and sediment transport. Indiana University, Bloomington, Indiana, PhD dissertation

    Google Scholar 

  • Malmaeus JM, Blenckner T, Markensten H, Persson I (2006) Lake phosphorus dynamics and climate warming: a mechanistic model approach. Ecol Model 190:1–14

    Article  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2007) Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshw Biol 52:2211–2225

    Article  CAS  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Google Scholar 

  • Neff BP, Day SM, Piggott AR, Fuller LM (2005) Base flow in the Great Lakes Basin. Scientific Investigations Report 2005–5217, U.S. Geological Survey

  • Ontkean GR, Chanasyk DS, Riemersma S, Bennett DR, Brunen JM (2003) Enhanced prairie wetland effects on surface water quality in Crowfoot Creek, Alberta. Water Qual Res J Can 38:335–359

    CAS  Google Scholar 

  • Powers SM, Johnson RA, Stanley EH (2012) Nutrient retention and the problem of hydrologic disconnection in streams and wetlands. Ecosystems. doi:10.1007/s10021-012-9520-8

    Google Scholar 

  • Prairie YT, Kalff J (1986) Effect of catchment size on phosphorus export. Water Resour Bull 22:465–470

    Article  CAS  Google Scholar 

  • Prepas EE, Planas D, Gibson JJ, Vitt DH, Prowse TD, Dinsmore WP, Halsey LA, McEachern PM, Paquet S, Scrimgeour GJ, Tonn WM, Paszkowski CA, Wolfstein K (2001) Landscape variables influencing nutrients and phytoplankton communities in Boreal Plain lakes of northern Alberta: a comparison of wetland- and upland-dominated catchments. Can J Fish Aquat Sci 58:1286–1299

    Article  CAS  Google Scholar 

  • Reckhow KH, Chapra SC (1983) Engineering approaches for lake management, volume 1: data analysis and empirical modeling. Butterworth Publisher, Boston

    Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications, chapter 3: biogeochemical characteristics. CRC Press, Boca Raton, pp 27–65

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146

    Article  CAS  Google Scholar 

  • Reinhardt M, Gächter R, Wehrli B, Müller B (2005) Phosphorus retention in small constructed wetlands treating agricultural drainage water. J Environ Qual 34:1251–1259

    Article  PubMed  CAS  Google Scholar 

  • Sivapalan M (2003) Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol Process 17:3163–3170

    Article  Google Scholar 

  • Smerdon BD, Mendoza CA, Devito KJ (2007) Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model. Water Resour Res 43:W01416. doi:10.1029/2006WR005137

  • Smith RA, Alexander RB, Schwarz GE (2003a) Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environ Sci Technol 37:3039–3047

    Article  PubMed  CAS  Google Scholar 

  • Smith SV, Swaney DP, Talaue-Mcmanus L, Bartley JD, Sandhei PT, McLaughlin CJ, Dupra VC, Crossland CJ, Buddemeier RW, Maxwell BA, Wulff F (2003b) Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. Bioscience 53:235–245

    Article  Google Scholar 

  • Snelder TH, Biggs BJF (2002) Multiscale river environment classification for water resources management. J Am Water Resour Assoc 38:1225–1239

    Article  Google Scholar 

  • Soranno PA, Hubler SL, Carpenter SR, Lathrop RC (1996) Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecol Appl 6:865–878

    Article  Google Scholar 

  • Soranno PA, Spence Cheruvelil K, Stevenson RJ, Rollins SL, Holden SW, Heaton S, Torng EK (2008) A framework for developing ecosystem-specific nutrient criteria: integrating biological thresholds with predictive modeling. Limnol Oceanogr 53:773–787

    Article  Google Scholar 

  • Soranno PA, Spence Cheruvelil K, Webster KE, Bremigan MT, Wagner T, Stow CA (2010) Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. Bioscience 60:440–454

    Article  Google Scholar 

  • Taylor CH, Pierson DC (1985) The effect of a small wetland on runoff response during spring snowmelt. Atmos Ocean 23:137–154

    Article  Google Scholar 

  • Tompkins TM, Whipps WW, Manor LJ, Wiley MJ, Radcliffe CW, Majewski DM (1997) Wetland effects on hydrological and water quality characteristics of a mid-Michigan river system. In: Trettin CC, Jurgensen MF, Grigal DF, Gale MR, Jeglum JK (eds) Northern forested wetlands: ecology and management. CRC Press, Boca Raton, pp 273–285

    Google Scholar 

  • Vanni MJ, Renwick WH, Headworth JL, Auch JD, Schaus MH (2001) Dissolved and particulate nutrient flux from three adjacent agricultural watersheds: a five-year study. Biogeochemistry 54:85–114

    Article  CAS  Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103

    Article  PubMed  Google Scholar 

  • Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 33:53–83

    CAS  Google Scholar 

  • Wang Y, Choi W (2005) Long-term impacts of land-use change on non-point source pollutant loads for the St. Louis metropolitan area, USA. Environ Manage 35:194–205

    Article  PubMed  Google Scholar 

  • Weller DE, Jordan TE, Correll DL (1998) Heuristic models for material discharge from landscapes with riparian buffers. Ecol Appl 8:1156–1169

    Article  Google Scholar 

  • Weller DE, Jordan TE, Correll DL, Liu Z (2003) Effects of land-use change on nutrient discharges from the Patuxent River Watershed. Estuaries 26:244–266

    Article  CAS  Google Scholar 

  • White JS, Bayley SE (2001) Nutrient retention in a northern prairie marsh (Frank Lake, Alberta) receiving municipal and agro-industrial wasterwater. Water Air Soil Pollut 126:63–81

    Article  CAS  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Woltemade CJ (2000) Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water. J Soil Water Conserv 55:303–309

    Google Scholar 

  • Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1:65–72

    Article  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Ann Rev Environ Resour 30:39–74

    Article  Google Scholar 

  • Zhang T (2011) Distance-decay patterns of nutrient loading at watershed scale: regression modeling with a special spatial aggregation strategy. J Hydrol 402:239–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Center for Water Sciences at Michigan State University (MSU). We thank Katie Droscha for assembling the lake nutrient and LULC datasets, and C. Emi Fergus for help with the literature related to wetland effects and comments on earlier drafts. Thanks to Sarah AcMoody, Justin Booth, and Dave Lusch at MSU’s Remote Sensing and GIS Outreach and Research Services for consultation and creation of some of the databases used in this study as well as for catchment delineations and LULC summaries. We also thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Soranno, P.A., Cheruvelil, K.S. et al. Evaluating the effects of upstream lakes and wetlands on lake phosphorus concentrations using a spatially-explicit model. Landscape Ecol 27, 1015–1030 (2012). https://doi.org/10.1007/s10980-012-9762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9762-z

Keywords

Navigation