Skip to main content
Log in

Multiscale comparison of spatial patterns using two-dimensional cross-spectral analysis: application to a semi-arid (gapped) landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Spectral analysis allows the characterization of temporal (1D) or spatial (2D) patterns in terms of their scale (frequency) distribution. Cross-spectral analysis can also be used to conduct independent correlation analyses at different scales between two variables, even in the presence of a complex superposition of structures, such as structures that are shifted, have different scales or have different levels of anisotropy. These well-grounded approaches have rarely been applied to two-dimensional ecological datasets. In this contribution, we illustrate the potential of the method. We start by providing a basic methodological introduction, and we clarify some technical points concerning the computation of two-dimensional coherency and phase spectra and associated confidence intervals. First, we illustrate the method using a simple theoretical model. Next, we present a real world application: the case of patterned (gapped) vegetation in SW Niger. In this example, we investigate the functional relationships between topography and the spatial distribution of two shrub species, Combretum micranthum G. Don. and Guiera senegalensis J.F. Gmel. We show that both the global vegetation pattern and the distribution of C. micranthum are independent at all analyzable scales (i.e., from 10 to 50 m) from possible relief-induced determinisms. Additionally, the two dominant shrub species form distinct patches, thus suggesting separate niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson JM, Mikhail EM (1998) Surveying, theory and practice. WCB/McGraw-Hill, Boston

    Google Scholar 

  • Barbier N, Couteron P, Lejoly J, Deblauwe V, Lejeune O (2006) Self-organised vegetation patterning as fingerprint of climate and human impact on semiarid ecosystems. J Ecol 94:537–547

    Article  Google Scholar 

  • Barbier N, Couteron P, Lefever R, Deblauwe V, Lejeune O (2008) Spatial decoupling of facilitation and competition at the origin of gap vegetation patterns in SW Niger. Ecology 89:1521–1531

    Article  PubMed  Google Scholar 

  • Bloomfield P (1976) Fourier analysis of time series: an introduction. Wiley, New York

    Google Scholar 

  • Capobianco R, Renshaw E (1998) The autocovariance function for marked point processes: a comparison between two different approaches. Biometrical J 40:431–446

    Article  Google Scholar 

  • Chen CH, Pau LF, Wang PSP (1999) Handbook of pattern recognition & computer vision. World Scientific, River Edge, NJ

    Book  Google Scholar 

  • Couteron P (2001) Using spectral analysis to confront distributions of individual species with an overall periodic pattern in semi-arid vegetation. Plant Ecol 156:229–243

    Article  Google Scholar 

  • Couteron P (2002) Quantifying change in patterned semi-arid vegetation by Fourier analysis of digitized aerial photographs. Int J Remote Sens 23:3407–3425

    Article  Google Scholar 

  • Couteron P, Kokou K (1997) Woody vegetation spatial patterns in a semi-arid savanna of Burkina Faso, West Africa. Plant Ecol 132:211–227

    Article  Google Scholar 

  • Couteron P, Ollier S (2005) A generalized, variogram-based framework for multi-scale ordination. Ecology 86:828–834

    Article  Google Scholar 

  • Couteron P, Pelissier R, Nicolini EA, Paget D (2005) Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol 42:1121–1128

    Article  Google Scholar 

  • Couteron P, Barbier N, Gautier D (2006) Textural ordination based on Fourier spectral decomposition: a method to analyze and compare landscape patterns. Landscape Ecol 21:555–567

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Diggle P (1989) Time series: a biostatistical introduction. Oxford University Press, Oxford

    Google Scholar 

  • Diouf A, Barbier N, Mahamane A, Lejoly J, Saadou M, Bogaert J (in press) Analyse de la structure spatiale des individus ligneux dans «une brousse tachetée» au Sud Ouest du Niger. Can J Forest Res

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Ford ED (1976) The canopy of Scots pine forest: description of a surface of complex roughness. Agr Forest Meteorol 17:9–32

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89:197–210

    Article  Google Scholar 

  • Granger CWJ (1964) Spectral analysis of economic time series. Princeton University Press, Princeton

    Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc Geoph 11:561–566

    Article  Google Scholar 

  • HilleRisLambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61

    Article  Google Scholar 

  • Hutchinson J, Dalziel JM, Keay RWJ, Hutchinson J (1954) Flora of west tropical Africa. Published under the authority of the Secretary of State for the Colonies by the Crown Agents for Oversea Governments and Administrations, London

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Keitt TH (2000) Spectral representation of neutral landscapes. Landscape Ecol 15:479–493

    Article  Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Article  CAS  PubMed  Google Scholar 

  • Lefever R, Lejeune O (1997) On the origin of tiger bush. B Math Biol 59:263–294

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation—trouble or new paradigm. Ecology 74:1659–1673

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Maraun D, Kurths J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Proc Geoph 11:505–514

    Article  Google Scholar 

  • McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90:46–56

    Article  PubMed  Google Scholar 

  • Mugglestone MA, Renshaw E (1996a) The exploratory analysis of bivariate spatial point patterns using cross-spectra. Environmetrics 7:361–377

    Article  Google Scholar 

  • Mugglestone MA, Renshaw E (1996b) A practical guide to the spectral analysis of spatial point processes. Comput Stat Data Anal 21:43–65

    Article  Google Scholar 

  • Mugglestone MA, Renshaw E (1998) Detection of geological lineations on aerial photographs using two-dimensional spectral analysis. Comput Geosci 24:771–784

    Article  Google Scholar 

  • Mugglestone MA, Renshaw E (2001) Spectral tests of randomness for spatial point patterns. Environ Ecol Stat 8:237–251

    Article  Google Scholar 

  • Pascual M, Guichard F (2005) Criticality and disturbance in spatial ecological systems. Trends Ecol Evol 20:88–95

    Article  PubMed  Google Scholar 

  • Platt T, Denman KL (1975) Spectral analysis in ecology. Annu Rev Ecol Syst 6:189–210

    Article  Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic Press, London

    Google Scholar 

  • Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392

    Article  Google Scholar 

  • Puech C (1994) Thresholds of homogeneity in targets in the landscape—relationship with remote-sensing. Int J Remote Sens 15:2421–2435

    Article  Google Scholar 

  • Quinn PF, Beven KJ, Lamb R (1995) The ln(a/tan-beta) index—how to calculate it and how to use it within the Topmodel framework. Hydrol Process 9:161–182

    Article  Google Scholar 

  • Rayner JN (1971) Introduction to spectral analysis. Pion Ltd., London

    Google Scholar 

  • Renshaw E (2002) Two-dimensional spectral analysis for marked point processes. Biometrical J 44:718–745

    Article  Google Scholar 

  • Renshaw E, Ford ED (1983) The interpretation of process from pattern using two-dimentional spectral analysis: methods and problems of interpretation. Appl Stat 32:51–63

    Article  Google Scholar 

  • Renshaw E, Ford ED (1984) The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56:75–85

    Google Scholar 

  • Renshaw E, Sarkka A (2001) Gibbs point processes for studying the development of spatial-temporal stochastic processes. Comput Stat Data Anal 36:85–105

    Article  Google Scholar 

  • Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175

    Article  PubMed  Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York

    Book  Google Scholar 

  • Rohani P, Lewis TJ, Grunbaum D, Ruxton GD (1997) Spatial self-organization in ecology: pretty patterns or robust reality? Trends Ecol Evol 12:70–74

    Article  Google Scholar 

  • Schneider DC (2001) The rise of the concept of scale in ecology. Bioscience 51:545–553

    Article  Google Scholar 

  • Solé RV, Bascompte J (2006) Self-organization in complex ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Sorensen R, Zinko U, Seibert J (2005) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci Discuss 2:1807–1834

    Article  Google Scholar 

  • Tang XO, Stewart WK (2000) Optical and sonar image classification: Wavelet packet transform vs Fourier transform. Comput Vis Image Und 79:25–46

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Phys Rev Lett 8719

  • Wackernagel H (1995) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Google Scholar 

  • Wagner HH (2004) Direct multi-scale ordination with canonical correspondence analysis. Ecology 85:342–351

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wilcox BP, Breshears DD, Allen CD (2003) Ecohydrology of a resource-conserving semiarid woodland: effects of scale and disturbance. Ecol Monogr 73:223–239

    Article  Google Scholar 

  • Wu XB (2005) Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes. Landscape Ecol 20:733–742

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Ecopas/UE project for scientific and technical support. We are also indebted to Dr. J. Ludwig and Dr. M. Mugglestone, as well as the anonymous reviewers that provided comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Barbier.

Additional information

Nomenclature

Hutchinson et al. (1954).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbier, N., Couteron, P., Planchon, O. et al. Multiscale comparison of spatial patterns using two-dimensional cross-spectral analysis: application to a semi-arid (gapped) landscape. Landscape Ecol 25, 889–902 (2010). https://doi.org/10.1007/s10980-010-9466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9466-1

Keywords

Navigation