Skip to main content
Log in

A new measure of longitudinal connectivity for stream networks

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Habitat connectivity is a central factor in shaping aquatic biological communities, but few tools exist to describe and quantify this attribute at a network scale in riverine systems. Here, we develop a new index to quantify longitudinal connectivity of river networks based on the expected probability of an organism being able to move freely between two random points of the network. We apply this index to two fish life histories and evaluate the effects of the number, passability, and placement of barriers on river network connectivity through the use of simulated dendritic ecological networks. We then extend the index to a real world dendritic river system in Newfoundland, Canada. Our results indicate that connectivity in river systems, as represented by our index, is most impacted by the first few barriers added to the system. This is in contrast to terrestrial systems, which are more resilient to low levels of connectivity. The results show a curvilinear relationship between barrier passability and structural connectivity. This suggests that an incremental improvement in passability would result in a greater improvement to river network connectivity for more permeable barriers than for less permeable barriers. Our analysis of the index in simulated and real river networks also showed that barrier placement played an important role in connectivity. Not surprisingly, barriers located near the river mouth have the greatest impact on fish with diadromous life histories while those located near the center of the river network have the most impact on fish with potadromous life histories. The proposed index is conceptually simple and sufficiently flexible to deal with variations in river structure and biological communities. The index will enable researchers to account for connectivity in habitat studies and will also allow resource managers to characterize watersheds, assess cumulative impacts of multiple barriers and determine priorities for restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barry WM (1990) Fishways for Queensland coastal streams: an urgent review. In: Proceedings of the international symposium on Fishways ’90, Gifu, Japan, pp 231–238

  • Baum ET (1994) Evolution of the Atlantic salmon restoration program in Maine. In: Calabi S, Stout A (eds) A hard look at some tough issues. New England Salmon Association Publisher, Newburyport, Maine, pp 36–41

    Google Scholar 

  • Beechie T, Beamer E, Wasserman L (1994) Estimating coho salmon rearing habitat and smolt production losses in a large river basin, and implications for habitat restoration. N Am J Fish Manag 14:797–811. doi:10.1577/1548-8675(1994)014<0797:ECSRHA>2.3.CO;2

    Article  Google Scholar 

  • Belford DA, Gould WR (1989) An evaluation of trout passage through six highway culverts in Montana. N Am J Fish Manag 9:437–445. doi:10.1577/1548-8675(1989)009<0437:AEOTPT>2.3.CO;2

    Article  Google Scholar 

  • Benda L, Poff NL, Miller D, Dunne T, Reeves G, Pess G et al (2004) The Network Dynamics Hypothesis: how channel networks structure riverine habitats. Bioscience 5:413–427. doi:10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2

    Article  Google Scholar 

  • Bennett AF, Henein K, Merriam G (1994) Corridor use and the elements of corridor quality—chipmunks and fencerows in a farmland mosaic. Biol Conserv 68:155–165. doi:10.1016/0006-3207(94)90347-6

    Article  Google Scholar 

  • Berkamp G, McCartney M, Dugan P, McNeely J, Acreman M (2000) Dams, ecosystem functions and environmental restoration Thematic Review II. 1 prepared as an input to the World Commission on Dams, Cape Town. http://intranet.iucn.org/webfiles/doc/archive/2001/IUCN913.pdf

  • Berry CR, Pimentel R (1985) Swimming performances of three rare Colorado River fishes. Trans Am Fish Soc 114:397–402. doi:10.1577/1548-8659(1985)114<397:SPOTRC>2.0.CO;2

    Article  Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889. doi:10.1007/s10980-005-5956-y

    Article  Google Scholar 

  • Clarkin K, Connor A, Furniss MJ, Gubernick B, Love M, Moynan K et al (2005) National inventory and assessment procedure—for identifying barriers to aquatic organism passage at road-stream crossings. US Dep Agric for Serv. http://www.stream.fs.fed.us/publications/PDFs/NIAP.pdf

  • Cooper AB, Mangel M (1999) The dangers of ignoring metapopulation structure for the conservation of salmonids. Fish Bull (Wash D C) 97:213–226

    Google Scholar 

  • Dodson JJ (1997) Fish migration: an evolutionary perspective. In: Godin JJ (ed) Behavioural ecology of teleost fishes. Oxford University Press, Toronto, pp 10–36

    Google Scholar 

  • Dunham JG, Vinyard GL, Rieman BE (1997) Habitat fragmentation and extinction risk of Lahontan cutthroat trout. N Am J Fish Manag 17:1126–1133. doi:10.1577/1548-8675(1997)017<1126:HFAERO>2.3.CO;2

    Article  Google Scholar 

  • Fagan WF (2002) Connectivity, fragmentation and extinction risk in dendritic metapopulations. Ecology 83:3243–3249

    Google Scholar 

  • Fagan WF, Unmack PJ, Burgess C, Minckley WL (2002) Rarity, fragmentation, and extinction risk in desert fishes. Ecology 83:3250–3256

    Google Scholar 

  • Fortuna MA, Gómez-Rodríguez C, Bascompte J (2006) Spatial network structure and amphibian persistence in stochastic environments. Proc R Soc Lond B Biol Sci 273:1429–1434. doi:10.1098/rspb.2005.3448

    Article  Google Scholar 

  • Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape patterns. Landscape Ecol 1:19–28. doi:10.1007/BF02275262

    Article  Google Scholar 

  • Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175. doi:10.1111/j.1461-0248.2006.01007.x

    Article  Google Scholar 

  • Harden Jones FR (1984) A view from the ocean. In: McCleave JD, Arnold GP, Dodson JJ, Neill WH (eds) Mechanisms of migration in fishes. University of British Columbia Press, Vancouver, pp 311–394

    Google Scholar 

  • Jones JA, Swanson FJ, Wemple BC, Snyder KU (2000) Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conserv Biol 14:76–85. doi:10.1046/j.1523-1739.2000.99083.x

    Article  Google Scholar 

  • Jones KL, Poole GC, O’Daniel SJ, Mertes LAK, Stanford JA (2008) Surface hydrology of low-relief landscapes: assessing surface water flow impedance using lidar-derived digital elevation models. Remote Sens Environ. doi:10.1016/j.rse.2008.01.024

    Google Scholar 

  • Jungwirth M, Schmutz S, Weiss S (1998) Fish migration and fish bypasses. Fishing News Books, Oxford

    Google Scholar 

  • Kondolf GM, Boulton AJ, O’Daniel S, Poole GC, Rahel FJ, Stanley EH et al (2006) Process-based ecological river restoration: visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecol Soc 11:5. http://www.ecologyandsociety.org/vol11/iss2/art5

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927. doi:10.1086/285580

    Article  Google Scholar 

  • Mallen-Cooper M, Harris J (1990) Fishways in mainland south-eastern Australia. In: Proceedings of the international symposium on Fishways ‘90, Gifu, Japan, pp 221–230

  • Master L (1990) The imperiled status of North American aquatic animals. Biodivers Netw News 3:1–8 (The Nature Conservancy)

    Google Scholar 

  • McLaughlin RL, Porto L, Noakes DLG, Baylis JR, Carl LM, Dodd HR et al (2006) Effects of low-head barriers on stream fishes: taxonomic affiliations and morphological correlates of sensitive species. Can J Fish Aquat Sci 63:766–779. doi:10.1139/f05-256

    Article  Google Scholar 

  • Meyers TF (1994) The program to restore Atlantic salmon to the Conneticut River. In: Calabi S, Stout A (eds) A hard look at some tough issues. New England Salmon Association Publisher, Newburyport, Maine, pp 11–21

    Google Scholar 

  • Mills EL, Leach JH, Carlton JT, Secor CL (1993) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. J Great Lakes Res 19:1–54

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Google Scholar 

  • Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv Biol 16:1318–1323. doi:10.1046/j.1523-1739.2002.01476.x

    Article  Google Scholar 

  • Moyle PB (1995) Conservation of native freshwater fishes in the Mediterranean-type climate of California, USA: a review. Biol Conserv 72:271–279. doi:10.1016/0006-3207(94)00089-9

    Article  Google Scholar 

  • Muhar S (1996) Habitat improvement of Austrian Rivers with regard to different scales. Regul Rivers Res Manag 12:471–482. doi:10.1002/(SICI)1099-1646(199607)12:4/5<471::AID-RRR403>3.0.CO;2-F

    Article  Google Scholar 

  • Myrick CA, Cech JJ (2000) Swimming performances of four California stream fishes: temperature effects. Environ Biol Fishes 58:289–295. doi:10.1023/A:1007649931414

    Article  Google Scholar 

  • Pacific Rivers Council (1993) The decline of coho salmon and the need for protection under the Endangered Species Act. Rep Pac Rivers Counc, Eugene, Washington

    Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landscape Ecol 21:959–967. doi:10.1007/s10980-006-0013-z

    Article  Google Scholar 

  • Peter A (1998) Interruption of the river continuum by barriers and the consequences for migratory fish. In: Jungwirth M, Schmutz S, Weiss S (eds) Fish migration and fish bypasses. Fishing New Books, Oxford, pp 99–112

    Google Scholar 

  • Plotnick RE, Gardner RH (1993) Lattices and landscapes. In: Garner RH (ed) Lectures on mathematics in the life sciences: predicting spatial effects in ecological systems. American Mathematical Society, Providence, Rhode Island, pp 129–157

    Google Scholar 

  • Poole GC (2002) Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshw Biol 47:641–660. doi:10.1046/j.1365-2427.2002.00922.x

    Article  Google Scholar 

  • Porcher JP, Travade F (1992) Les dipositifs de franchissement: bases biologiques, limites et rappels réglementaires. en Bull Fr Peche Piscic 326–327:5–15

  • Pringle C (2003) What is hydrologic connectivity and why is it ecologically important? Hydrol Process 17:2685–2689. doi:10.1002/hyp.5145

    Article  Google Scholar 

  • Quiros R (1989) Structures assisting the migrations of non-salmonid fish: Latin America, FAO-COPESCAL Tech Pap 5. UN FAO, Rome

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL:http://www.R-project.org

  • Schick RS, Lindley ST (2007) Directed connectivity among fish populations in a riverine network. J Appl Ecol 44:1116–1126. doi:10.1111/j.1365-2664.2007.01383.x

    Article  Google Scholar 

  • Spens J, Englund G, Lundqvist H (2007) Network connectivity and dispersal barriers: using geographical information system (GIS) tools to predict landscape scale distribution of a key predator (Esox lucius) among lakes. J Appl Ecol 44:1127–1137. doi:10.1111/j.1365-2664.2007.01382.x

    Article  Google Scholar 

  • Stanford JA, Ward JV (2001) Revisiting the serial discontinuity concept. Regul Rivers Res Manag 17:303–310. doi:10.1002/rrr.659

    Article  Google Scholar 

  • Stanford JA, Ward JV, Liss WJ, Frissell CA, Williams RN, Lichatowich JA et al (1996) A general protocol for restoration of regulated rivers. Regul Rivers Res Manag 12:391–413. doi:10.1002/(SICI)1099-1646(199607)12:4/5<391::AID-RRR436>3.0.CO;2-4

    Article  Google Scholar 

  • Stolte LW (1994) Atlantic salmon restoration in the Merrimack River basin. In: Calabi S, Stout A (eds) A hard look at some tough issues. New England Salmon Association, Newburyport, Maine, pp 22–35

    Google Scholar 

  • Thorp JH, Thoms MC, Delong MD (2006) The Riverine Ecosystem Synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147. doi:10.1002/rra.901

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer-Verlag, New York

    Google Scholar 

  • Urban DL, Keitt TH (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Ward JV, Stanford JA (1983) Serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM (eds) Dynamics of lotic systems. Ann Arbor Science, Ann Arbor, pp 29–42

    Google Scholar 

  • Warren ML, Pardew MG (1998) Road crossings as barriers to small-fish movement. Trans Am Fish Soc 127:637–644. doi:10.1577/1548-8659(1998)127<0637:RCABTS>2.0.CO;2

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. doi:10.1038/30918

    Article  PubMed  CAS  Google Scholar 

  • Wheeler AP, Angermeier PL, Rosenberger AE (2005) Impacts of new highways and subsequent landscape urbanization on stream habitat and biota. Rev Fish Sci 13:141–164. doi:10.1080/10641260590964449

    Article  Google Scholar 

  • Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515. doi:10.1046/j.1365-2427.2002.00887.x

    Article  Google Scholar 

  • With KA, Schrott GR, King AW (2006) The implications of metalandscape connectivity for population viability in migratory songbirds. Landscape Ecol 21:157–167. doi:10.1007/s10980-005-1786-1

    Article  Google Scholar 

  • Zhong Y, Power G (1996) Environmental impacts of hydroelectric projects on fish resources in China. Regul Rivers Res Manag 12:81–98. doi:10.1002/(SICI)1099-1646(199601)12:1<81::AID-RRR378>3.0.CO;2-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Parks Canada and a CFI grant to YFW. Thanks to B. Adams, L. Johnson, N. Schumaker, and five anonymous reviewers for helpful feedback on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cote, D., Kehler, D.G., Bourne, C. et al. A new measure of longitudinal connectivity for stream networks. Landscape Ecol 24, 101–113 (2009). https://doi.org/10.1007/s10980-008-9283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-008-9283-y

Keywords

Navigation