Skip to main content
Log in

Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Hypertrophic cardiomyopathy (HCM) is characterized by asymmetric septal hypertrophy and is often caused by mutations in MYBPC3 gene encoding cardiac myosin-binding protein C. In contrast to humans, who are already affected at the heterozygous state, mouse models develop the phenotype mainly at the homozygous state. Evidence from cell culture work suggested that altered proteasome function contributes to the pathogenesis of HCM. Here we tested in two heterozygous Mybpc3-targeted mouse models whether adrenergic stress unmasks a specific cardiac phenotype and proteasome dysfunction. The first model carries a human Mybpc3 mutation (Het-KI), the second is a heterozygous Mybpc3 knock-out (Het-KO). Both models were compared to wild-type (WT) mice. Mice were treated with a combination of isoprenaline and phenylephrine (ISO/PE) or NaCl for 1 week. Whereas ISO/PE induced left ventricular hypertrophy (LVH) with increased posterior wall thickness to a similar extent in all groups, it increased septum thickness only in Het-KI and Het-KO. ISO/PE did not affect the proteasomal chymotrypsin-like activity or β5-subunit protein level in Het-KO or wild-type mice (WT). In contrast, both parameters were markedly lower in Het-KI and negatively correlated with the degree of LVH in Het-KI only. In conclusion, adrenergic stress revealed septal hypertrophy in both heterozygous mouse models of HCM, but proteasome dysfunction only in Het-KI mice, which carry a mutant allele and closely mimic human HCM. This supports the hypothesis that proteasome impairment contributes to the pathophysiology of HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashrafian H, McKenna WJ, Watkins H (2011) Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res 109:86–96. doi:109/1/86[pii]10.1161/CIRCRESAHA.111.242974

    Article  PubMed  CAS  Google Scholar 

  • Bahrudin U, Morisaki H, Morisaki T, Ninomiya H, Higaki K, Nanba E, Igawa O, Takashima S, Mizuta E, Miake J, Yamamoto Y, Shirayoshi Y, Kitakaze M, Carrier L, Hisatome I (2008) Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy. J Mol Biol 384:896–907. doi:10.1016/j.jmb.2008.09.070

    Article  PubMed  CAS  Google Scholar 

  • Bardswell SC, Cuello F, Rowland AJ, Sadayappan S, Robbins J, Gautel M, Walker JW, Kentish JC, Avkiran M (2010) Distinct sarcomeric substrates are responsible for protein kinase D-mediated regulation of cardiac myofilament Ca2+ sensitivity and cross-bridge cycling. J Biol Chem 285:5674–5682. doi:10.1074/jbc.M109.066456

    Article  PubMed  CAS  Google Scholar 

  • Barefield D, Sadayappan S (2010) Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol 48:866–875. doi:10.1016/j.yjmcc.2009.11.014

    Article  PubMed  CAS  Google Scholar 

  • Buitrago M, Lorenz K, Maass AH, Oberdorf-Maass S, Keller U, Schmitteckert EM, Ivashchenko Y, Lohse MJ, Engelhardt S (2005) The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med 11:837–844. doi:nm1272[pii]10.1038/nm1272

    Article  PubMed  CAS  Google Scholar 

  • Carrier L, Bonne G, Bahrend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour JB, Dubourg O, Desnos M, Hagege AA, Trent RJ, Komajda M, Fiszman M, Schwartz K (1997) Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res 80:427–434

    PubMed  CAS  Google Scholar 

  • Carrier L, Knoell R, Vignier N, Keller DI, Bausero P, Prudhon B, Isnard R, Ambroisine ML, Fiszman M, Ross J Jr, Schwartz K, Chien KR (2004) Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovasc Res 63:293–304. doi:10.1016/j.cardiores.2004.04.009

    Article  PubMed  CAS  Google Scholar 

  • Carrier L, Schlossarek S, Willis MS, Eschenhagen T (2010) The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res 85:330–338. doi:10.1093/cvr/cvp247

    Article  PubMed  CAS  Google Scholar 

  • Cazorla O, Szilagyi S, Vignier N, Salazar G, Kramer E, Vassort G, Carrier L, Lacampagne A (2006) Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice. Cardiovasc Res 69:370–380. doi:10.1016/j.cardiores.2005.11.009

    Article  PubMed  CAS  Google Scholar 

  • Charron P, Carrier L, Dubourg O, Tesson F, Desnos M, Richard P, Bonne G, Guicheney P, Hainque B, Bouhour JB, Mallet A, Feingold J, Schwartz K, Komajda M (1997) Penetrance of familial hypertrophic cardiomyopathy. Genet Couns 8:107–114

    PubMed  CAS  Google Scholar 

  • Ciechanover A (2006) The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 66:S7–S19. doi:10.1212/01.wnl.0000192261.02023.b8

    Article  PubMed  Google Scholar 

  • Colson BA, Bekyarova T, Fitzsimons DP, Irving TC, Moss RL (2007) Radial displacement of myosin cross-bridges in mouse myocardium due to ablation of myosin binding protein-C. J Mol Biol 367:36–41. doi:10.1016/j.jmb.2006.12.063

    Article  PubMed  CAS  Google Scholar 

  • Cuello F, Bardswell SC, Haworth RS, Ehler E, Sadayappan S, Kentish JC, Avkiran M (2011) Novel role for p90 ribosomal S6 kinase in the regulation of cardiac myofilament phosphorylation. J Biol Chem 286:5300–5310. doi:10.1074/jbc.M110.202713

    Article  PubMed  CAS  Google Scholar 

  • Decker RS, Decker ML, Kulikovskaya I, Nakamura S, Lee DC, Harris K, Klocke FJ, Winegrad S (2005) Myosin-binding protein C phosphorylation, myofibril structure, and contractile function during low-flow ischemia. Circulation 111:906–912. doi:10.1161/01.CIR.0000155609.95618.75

    Article  PubMed  CAS  Google Scholar 

  • Drews O, Tsukamoto O, Liem D, Streicher J, Wang Y, Ping P (2010) Differential regulation of proteasome function in isoproterenol-induced cardiac hypertrophy. Circ Res 107:1094–1101. doi:10.1161/CIRCRESAHA.110.222364

    Article  PubMed  CAS  Google Scholar 

  • Eijssen LM, van den Bosch BJ, Vignier N, Lindsey PJ, van den Burg CM, Carrier L, Doevendans PA, van der Vusse GJ, Smeets HJ (2008) Altered myocardial gene expression reveals possible maladaptive processes in heterozygous and homozygous cardiac myosin-binding protein C knockout mice. Genomics 91:52–60. doi:10.1016/j.ygeno.2007.09.005

    Article  PubMed  CAS  Google Scholar 

  • Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276. doi:10.1093/eurheartj/ehm342

    Article  PubMed  Google Scholar 

  • Flavigny J, Souchet M, Sebillon P, Berrebi-Bertrand I, Hainque B, Mallet A, Bril A, Schwartz K, Carrier L (1999) COOH-terminal truncated cardiac myosin-binding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or incorporation in fetal rat cardiomyocytes. J Mol Biol 294:443–456. doi:10.1006/jmbi.1999.3276

    Article  PubMed  CAS  Google Scholar 

  • Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckmann JS, Carrier L (1998) Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development. Circ Res 82:130–133

    PubMed  CAS  Google Scholar 

  • Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein C: a modulator of cardiac contraction? EMBO J 14:1952–1960

    PubMed  CAS  Google Scholar 

  • Gautel M, Fürst DO, Cocco A, Schiaffino S (1998) Isoform transitions of the myosin-binding protein C family in developing human and mouse muscles. Lack of isoform transcomplementation in cardiac muscle. Circ Res 82:124–129

    PubMed  CAS  Google Scholar 

  • Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006. doi:0092-8674(90)90274-I[pii]

    Article  PubMed  CAS  Google Scholar 

  • Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG (1996) A mouse model of familial hypertrophic cardiomyopathy. Science 272:731–734

    Article  PubMed  CAS  Google Scholar 

  • Gomes AV, Zong C, Ping P (2006) Protein degradation by the 26S proteasome system in the normal and stressed myocardium. Antioxid Redox Signal 8:1677–1691. doi:10.1089/ars.2006.8.1677

    Article  PubMed  CAS  Google Scholar 

  • Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL (2002) Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res 90:594–601

    Article  PubMed  CAS  Google Scholar 

  • Hedhli N, Depre C (2010) Proteasome inhibitors and cardiac cell growth. Cardiovasc Res 85:321–329. doi:10.1093/cvr/cvp226

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530. doi:S0962-8924(00)01852-3[pii]

    Article  PubMed  CAS  Google Scholar 

  • Laporte D, Salin B, Daignan-Fornier B, Sagot I (2008) Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 181:737–745. doi:10.1083/jcb.200711154

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906. doi:0.1161/01.RES.0000102042.83024.CA93/10/896[pii]

    Article  PubMed  CAS  Google Scholar 

  • Maass AH, Ikeda K, Oberdorf-Maass S, Maier SK, Leinwand LA (2004) Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation 110:2102–2109. doi:10.1161/01.CIR.0000144460.84795.E3

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320

    Article  PubMed  Google Scholar 

  • Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H (2009) Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105:219–222. doi:10.1161/CIRCRESAHA.109.202440

    Article  PubMed  CAS  Google Scholar 

  • McClellan G, Kulikovskaya I, Winegrad S (2001) Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. Biophys J 81:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • McClellan G, Kulikovskaya I, Flavigny J, Carrier L, Winegrad S (2004) Effect of cardiac myosin-binding protein C on stability of the thick filament. J Mol Cell Cardiol 37:823–835. doi:10.1016/j.yjmcc.2004.05.023S0022282804001646[pii]

    Article  PubMed  CAS  Google Scholar 

  • Mearini G, Schlossarek S, Willis MS, Carrier L (2008) The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 1782:749–763. doi:10.1016/j.bbadis.2008.06.009

    PubMed  CAS  Google Scholar 

  • Mearini G, Gedicke C, Schlossarek S, Witt CC, Kramer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L (2010) Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res 85:357–366. doi:10.1093/cvr/cvp348

    Article  PubMed  CAS  Google Scholar 

  • Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP (2000) A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 101:1396–1402

    PubMed  CAS  Google Scholar 

  • Pohlmann L, Kroger I, Vignier N, Schlossarek S, Kramer E, Coirault C, Sultan KR, El-Armouche A, Winegrad S, Eschenhagen T, Carrier L (2007) Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes. Circ Res 101:928–938. doi:10.1161/CIRCRESAHA.107.158774

    Article  PubMed  CAS  Google Scholar 

  • Portbury AL, Willis MS, Patterson C (2011) Tearin’ up my heart: proteolysis in the cardiac sarcomere. J Biol Chem 286:9929–9934. doi:10.1074/jbc.R110.170571

    Article  PubMed  CAS  Google Scholar 

  • Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 121:997–1004. doi:10.1161/CIRCULATIONAHA.109.904557

    Article  PubMed  CAS  Google Scholar 

  • Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations and implications for molecular diagnosis strategy. Circulation 107:2227–2232. doi:10.1161/01.CIR.0000066323.15244.54

    Article  PubMed  Google Scholar 

  • Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93:841–842

    Article  PubMed  CAS  Google Scholar 

  • Rottbauer W, Gautel M, Zehelein J, Labeit S, Franz WM, Fischer C, Vollrath B, Mall G, Dietz R, Kubler W, Katus HA (1997) Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization of cardiac transcript and protein. J Clin Invest 100:475–482. doi:10.1172/JCI119555

    Article  PubMed  CAS  Google Scholar 

  • Saadane N, Alpert L, Chalifour LE (1999) Expression of immediate early genes, GATA-4, and Nkx-2.5 in adrenergic-induced cardiac hypertrophy and during regression in adult mice. Br J Pharmacol 127:1165–1176. doi:10.1038/sj.bjp.0702676

    Article  PubMed  CAS  Google Scholar 

  • Saadane N, Alpert L, Chalifour LE (2000) Altered molecular response to adrenoreceptor-induced cardiac hypertrophy in Egr-1-deficient mice. Am J Physiol Heart Circ Physiol 278:H796–H805

    PubMed  CAS  Google Scholar 

  • Sadayappan S, Gulick J, Osinska H, Martin LA, Hahn HS, Dorn GW 2nd, Klevitsky R, Seidman CE, Seidman JG, Robbins J (2005) Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res 97:1156–1163. doi:10.1161/01.RES.0000190605.79013.4d

    Article  PubMed  CAS  Google Scholar 

  • Sadayappan S, Osinska H, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD, Seidman CE, Seidman JG, Robbins J (2006) Cardiac myosin binding protein c phosphorylation is cardioprotective. Proc Natl Acad Sci USA 103:16918–16923

    Article  PubMed  CAS  Google Scholar 

  • Sarikas A, Carrier L, Schenke C, Doll D, Flavigny J, Lindenberg KS, Eschenhagen T, Zolk O (2005) Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 66:33–44. doi:10.1016/j.cardiores.2005.12.021

    Article  PubMed  CAS  Google Scholar 

  • Schlossarek S, Carrier L (2011) The ubiquitin-proteasome system in cardiomyopathies. Curr Opin Cardiol 26:190–195. doi:10.1097/HCO.0b013e32834598fe

    Article  PubMed  Google Scholar 

  • Schlossarek S, Mearini G, Carrier L (2011) Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J Mol Cell Cardiol 50:613–620. doi:10.1016/j.yjmcc.2011.01.014

    Article  PubMed  CAS  Google Scholar 

  • Seidman CE, Seidman JG (2011) Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ Res 108:743–750. doi:10.1161/CIRCRESAHA.110.223834

    Article  PubMed  CAS  Google Scholar 

  • Su H, Wang X (2010) The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 85:253–262. doi:10.1093/cvr/cvp287

    Article  PubMed  CAS  Google Scholar 

  • van Dijk SJ, Dooijes D, Dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, Ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy. Haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473–1483. doi:10.1161/CIRCULATIONAHA.108.838672

    Article  PubMed  Google Scholar 

  • Vignier N, Schlossarek S, Fraysse B, Mearini G, Kramer E, Pointu H, Mougenot N, Guiard J, Reimer R, Hohenberg H, Schwartz K, Vernet M, Eschenhagen T, Carrier L (2009) Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res 105:239–248. doi:10.1161/CIRCRESAHA.109.201251

    Article  PubMed  CAS  Google Scholar 

  • Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C (2010) Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res 106:463–478. doi:10.1161/CIRCRESAHA.109.208801

    Article  PubMed  CAS  Google Scholar 

  • Wojcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589

    Article  PubMed  CAS  Google Scholar 

  • Woodcock EA, Du XJ, Reichelt ME, Graham RM (2008) Cardiac alpha 1-adrenergic drive in pathological remodelling. Cardiovasc Res 77:452–462. doi:10.1093/cvr/cvm078

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank X.J. Wang (University of South Dakota) for the antibody directed against the β5-subunit of the proteasome. This work was supported by the sixth and seventh Framework Programs of the European Union (Marie Curie EXT-014051; Health-F2-2009-241577; Big-Heart project), the Deutsche Forschungsgemeinschaft (FOR-604-CA 618/1-1 and 1-2), and the Leducq Foundation (Research grant Nr. 11, CVR 04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Carrier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 114 kb)

Supplementary material 2 (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlossarek, S., Schuermann, F., Geertz, B. et al. Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil 33, 5–15 (2012). https://doi.org/10.1007/s10974-011-9273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9273-6

Keywords

Navigation