Skip to main content

Advertisement

Log in

Multiplicity of experimental approaches to therapy for genetic muscle diseases and necessity for population screening

  • Review Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Currently a multiplicity of experimental approaches to therapy for genetic muscle diseases is being investigated. These include replacement of the missing gene, manipulation of the gene message, repair of the mutation, upregulation of an alternative gene and pharmacological interventions targeting a number of systems. A number of these approaches are in current clinical trials. There is considerable anticipation that perhaps more than one of the approaches will finally prove of clinical benefit, but there are many voices of caution. No matter which approaches might ultimately prove effective, there is a consensus that for most benefit to the patients it will be necessary to start treatment as early as possible. A consensus is also developing that the only way to do this is to implement population-based newborn screening to identify affected children shortly after birth. Population-based newborn screening is currently practised in very few places in the world and it brings with it implications for prevention rather than cure of genetic muscle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor H, Macharia R, Navarrete R et al (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci USA 104:1835–1840. doi:10.1073/pnas.0604893104

    Article  PubMed  CAS  Google Scholar 

  • Arechavala-Gomeza V, Graham IR, Popplewell LJ et al (2007) Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 18:798–810. doi:10.1089/hum.2006.061

    Article  PubMed  CAS  Google Scholar 

  • Assereto S, Stringara S, Sotgia F et al (2006) Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. Am J Physiol Cell Physiol 290:C577–C582. doi:10.1152/ajpcell.00434.2005

    Article  PubMed  CAS  Google Scholar 

  • Bartoli M, Gicquel E, Barrault L et al (2008) Mannosidase I inhibition rescues the human alpha-sarcoglycan R77C recurrent mutation. Hum Mol Genet 17:1214–1221. doi:10.1093/hmg/ddn029

    Article  PubMed  CAS  Google Scholar 

  • Beckmann R, Sauer M, Ketelsen U-P et al (1978) Early diagnosis of Duchenne muscular dystrophy. Lancet ii:105. doi:10.1016/S0140-6736(78)91419-8

    Article  Google Scholar 

  • Benabdallah BF, Bouchentouf M, Rousseau J et al (2008) Inhibiting myostatin with follistatin improves the success of myoblast transplantation in dystrophic mice. Cell Transplant 17:337–350

    PubMed  Google Scholar 

  • Bhagavati S (2008) Stem cell based therapy for skeletal muscle diseases. Curr Stem Cell Res Ther 3:219–228. doi:10.2174/157488808785740343

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovich S, McNally EM, Khurana TS (2008) Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve 37:308–316. doi:10.1002/mus.20920

    Article  PubMed  CAS  Google Scholar 

  • Bonifati MD, Ruzza G, Bonometto P et al (2000) A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve 23:1344–1347. doi:10.1002/1097-4598(200009)23:9<1344::AID-MUS4>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  • Bouchentouf M, Benabdallah BF, Bigey P et al (2008) Vascular endothelial growth factor reduced hypoxia-induced death of human myoblasts and improved their engraftment in mouse muscles. Gene Ther 15:404–414. doi:10.1038/sj.gt.3303059

    Article  PubMed  CAS  Google Scholar 

  • Bradley DM, Parsons EP, Clarke AJ (1993) Experience with screening newborns for Duchenne muscular dystrophy in Wales. BMJ 306:357–360

    PubMed  CAS  Google Scholar 

  • Burkin DJ, Wallace GQ, Nicol KJ et al (2001) Enhanced expression of the alpha 7 beta 1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. J Cell Biol 152:1207–1218. doi:10.1083/jcb.152.6.1207

    Article  PubMed  CAS  Google Scholar 

  • Bushby KM, Hill A, Steele JG (1999) Failure of early diagnosis in symptomatic Duchenne muscular dystrophy. Lancet 353:557–558. doi:10.1016/S0140-6736(98)05279-9 (letter)

    Article  PubMed  CAS  Google Scholar 

  • Buyse GM, Van der Mieren G, Erb M, et al. (2008) Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur Heart J

  • Camirand G, Stephan L, Rousseau J et al (2008) Central tolerance to myogenic cell transplants does not include muscle neoantigens. Transplantation 85:1791–1801

    Article  PubMed  Google Scholar 

  • Cerletti M, Negri T, Cozzi F et al (2003) Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther 10:750–757. doi:10.1038/sj.gt.3301941

    Article  PubMed  CAS  Google Scholar 

  • Cerletti M, Jurga S, Witczak CA et al (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47. doi:10.1016/j.cell.2008.05.049

    Article  PubMed  CAS  Google Scholar 

  • Deol JR, Danialou G, Larochelle N et al (2007) Successful compensation for dystrophin deficiency by a helper-dependent adenovirus expressing full-length utrophin. Mol Ther 15:1767–1774. doi:10.1038/sj.mt.6300260

    Article  PubMed  CAS  Google Scholar 

  • Dubowitz V (2002) Therapeutic possibilities in muscular dystrophy: the hope versus the hype. Neuromuscul Disord 12:113–116. doi:10.1016/S0960-8966(01)00319-4

    Article  PubMed  Google Scholar 

  • Eagle M, Baudouin SV, Chandler C et al (2002) Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord 12:926–929. doi:10.1016/S0960-8966(02)00140-2

    Article  PubMed  Google Scholar 

  • Ferrer A, Foster H, Wells KE et al (2004) Long-term expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Ther 11:884–893. doi:10.1038/sj.gt.3302242

    Article  PubMed  CAS  Google Scholar 

  • Gardner-Medwin D, Bundey S, Green S (1978) Early diagnosis of Duchenne muscular dystrophy. Lancet 1:1102. doi:10.1016/S0140-6736(78)90949-2

    Article  PubMed  CAS  Google Scholar 

  • Gregorevic P, Blankinship MJ, Allen JM et al (2008) Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol Ther 16:657–664. doi:10.1038/mt.2008.28

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD, Radley HG, Gebski BL, Bogoyevitch MA, Shavlakadze T (2008) Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin Exp Pharm Physiol 35:846–851

    Article  CAS  Google Scholar 

  • Haldane JBS (1935) The rate of spontaneous mutation of a human gene. J Genet 31:317–326. doi:10.1007/BF02982403

    Article  Google Scholar 

  • Herweijer H, Wolff JA (2007) Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther 14:99–107

    PubMed  CAS  Google Scholar 

  • Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. doi:10.1016/0092-8674(87)90579-4

    Article  PubMed  CAS  Google Scholar 

  • Holding C, Bentley D, Roberts R et al (1993) Development and validation of laboratory procedures for preimplantation diagnosis of Duchenne muscular dystrophy. J Med Genet 30:903–909. doi:10.1136/jmg.30.11.903

    Article  PubMed  CAS  Google Scholar 

  • Huard J, Roy R, Bouchard JP et al (1992) Human myoblast transplantation between immunohistocompatible donors and recipients produces immune reactions. Transplant Proc 24:3049–3051

    PubMed  CAS  Google Scholar 

  • Kakulas BA (1997) Problems and potential for gene therapy in Duchenne muscular dystrophy. Neuromuscul Disord 7:319–324. doi:10.1016/S0960-8966(97)00056-4

    Article  PubMed  CAS  Google Scholar 

  • Kapsa RM, Wong SH, Quigley AF (2008) Electroporation of corrective nucleic acids (CNA) in vivo to promote gene correction in dystrophic muscle. Methods Mol Biol 423:405–419 (Clifton, NJ)

    Article  PubMed  CAS  Google Scholar 

  • Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517. doi:10.1016/0092-8674(87)90504-6

    Article  PubMed  CAS  Google Scholar 

  • Kuhr CS, Lupu M, Storb R (2007) Hematopoietic cell transplantation directly into dystrophic muscle fails to reconstitute satellite cells and myofibers. Biol Blood Marrow Transplant 13:886–888. doi:10.1016/j.bbmt.2007.04.012

    Article  PubMed  CAS  Google Scholar 

  • Kunkel LM, Bachrach E, Bennett RR et al (2006) Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish. J Hum Genet 51:397–406. doi:10.1007/s10038-006-0374-9

    Article  PubMed  Google Scholar 

  • Lai Y, Yue Y, Liu M et al (2005) Efficient in vivo gene expression by trans-splicing Adeno-associated viral vectors. Nat Biotechnol 23:1435–1439. doi:10.1038/nbt1153

    Article  PubMed  CAS  Google Scholar 

  • Laing NG (1993) Molecular genetics and genetic counselling for Duchenne/Becker muscular dystrophy. In: Partridge T (ed) Molecular and cell biology of muscular dystrophy. Chapman and Hall, London, pp 37–84

    Google Scholar 

  • Manzur AY, Kuntzer T, Pike M et al (2008) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane database of systematic reviews (Online):CD003725

  • Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7:112. doi:10.1186/gb-2006-7-7-112

    Article  PubMed  CAS  Google Scholar 

  • Minetti GC, Colussi C, Adami R et al (2006) Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 12:1147–1150. doi:10.1038/nm1479

    Article  PubMed  CAS  Google Scholar 

  • Moghadaszadeh B, Albrechtsen R, Guo LT et al (2003) Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins. Hum Mol Genet 12:2467–2479. doi:10.1093/hmg/ddg264

    Article  PubMed  CAS  Google Scholar 

  • Moll J, Barzaghi P, Lin S et al (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413:302–307. doi:10.1038/35095054

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Dechant C, Meng G et al (1992) Estimation of the male and female mutation rates in Duchenne muscular dystrophy (DMD). Hum Genet 89:204–206

    PubMed  CAS  Google Scholar 

  • Odom GL, Gregorevic P, Allen JM et al (2008) Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol Ther 16:1539–1545. doi:10.1038/mt.2008.149

    Article  PubMed  CAS  Google Scholar 

  • Parsons EP, Clarke AJ, Hood K et al (2002) Newborn screening for Duchenne muscular dystrophy: a psychosocial study. Arch Dis Child 86:F91–F95. doi:10.1136/adc.86.2.91

    Article  CAS  Google Scholar 

  • Parsons EP, Bradley DM, Clarke AJ (2003) Newborn screening for Duchenne muscular dystrophy. Arch Dis Child 88:91–92. doi:10.1136/adc.88.1.91-b

    Article  CAS  Google Scholar 

  • Parsons EP, Clarke AJ, Bradley DM (2004) Developmental progress in Duchenne muscular dystrophy: lessons for earlier detection. Eur J Paediatr Neurol 8:145–153. doi:10.1016/j.ejpn.2004.01.009

    Article  PubMed  Google Scholar 

  • Parsons EP, King JT, Israel JA et al (2007) Mothers’ accounts of screening newborn babies in Wales (UK). Midwifery 23:59–65. doi:10.1016/j.midw.2006.05.008

    Article  PubMed  Google Scholar 

  • Radley HG, Davies MJ, Grounds MD (2008) Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 18:227–238. doi:10.1016/j.nmd.2007.11.002

    Article  PubMed  Google Scholar 

  • Rafael JA, Tinsley JM, Potter AC et al (1998) Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nat Genet 19:79–82. doi:10.1038/ng0598-79

    Article  PubMed  CAS  Google Scholar 

  • Robertson JA (2003) The $1000 genome: ethical and legal issues in whole genome sequencing of individuals. Am J Bioeth 3:W35–W42

    Google Scholar 

  • Roses AD (1988) Mutants in Duchenne muscular dystrophy. Implications for prevention. Arch Neurol 45:84–85

    PubMed  CAS  Google Scholar 

  • Sampaolesi M, Blot S, D’Antona G et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579. doi:10.1038/nature05282

    Article  PubMed  CAS  Google Scholar 

  • Shavlakadze T, White J, Hoh JF et al (2004) Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice. Mol Ther 10:829–843. doi:10.1016/j.ymthe.2004.07.026

    Article  PubMed  CAS  Google Scholar 

  • Silva-Barbosa SD, Butler-Browne GS, de Mello W et al (2008) Human myoblast engraftment is improved in laminin-enriched microenvironment. Transplantation 85:566–575

    Article  PubMed  Google Scholar 

  • Spencer MJ, Mellgren RL (2002) Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 11:2645–2655. doi:10.1093/hmg/11.21.2645

    Article  PubMed  CAS  Google Scholar 

  • Tinsley JM, Potter AC, Phelps SR et al (1996) Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384:349–353. doi:10.1038/384349a0

    Article  PubMed  CAS  Google Scholar 

  • van Deutekom JC, Janson AA, Ginjaar IB et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686. doi:10.1056/NEJMoa073108

    Article  PubMed  Google Scholar 

  • Wagner KR, Fleckenstein JL, Amato AA et al (2008) A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63:561–571. doi:10.1002/ana.21338

    Article  PubMed  CAS  Google Scholar 

  • Welch EM, Barton ER, Zhuo J et al (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91. doi:10.1038/nature05756

    Article  PubMed  CAS  Google Scholar 

  • Wells DJ (2006) Therapeutic restoration of dystrophin expression in Duchenne muscular dystrophy. J Muscle Res Cell Motil 27:387–398. doi:10.1007/s10974-006-9081-6

    Article  PubMed  CAS  Google Scholar 

  • Wilton S (2007) PTC124, nonsense mutations and Duchenne muscular dystrophy. Neuromuscul Disord 17:719–720. doi:10.1016/j.nmd.2007.07.001

    Article  PubMed  Google Scholar 

  • Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN, Duan D (2008) A single intravenous injection of Adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 16:1944–1952

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The support of Australian National Health and Medical Research Council Principal Research Fellowship 403941 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel G. Laing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laing, N.G. Multiplicity of experimental approaches to therapy for genetic muscle diseases and necessity for population screening. J Muscle Res Cell Motil 29, 247–252 (2008). https://doi.org/10.1007/s10974-008-9158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-008-9158-5

Keywords

Navigation