Skip to main content
Log in

Comprehensive atomic insight into the whole process of thermolysis of HMX/CL-20 mixed explosives based on a brand-new layered model of mixed explosives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Based on a brand-new and excellent layered model of mixed explosives, the thermolysis process of HMX/CL-20 mixed explosives at different temperatures was studied by reactive molecular dynamics. The thermolysis mechanism was revealed on the atomic scale, and some gratifying new discoveries were obtained. Among them, the activation energy of the mixture in two stages was lower than that of the pure HMX system in different degrees, and CL-20 would promote the thermolysis of HMX. The analysis of the initial reaction path showed that a large amount of NO2 brought by CL-20 and OH generated by HNO2 decomposition would be the important factors of this phenomenon. The direct reaction between HMX and CL-20 also changed with the change of temperature. Furthermore, the addition of CL-20 would increase the number of final products such as H2O, N2, H2. The analysis of bond number brought a new conclusion. A large number of C atoms in the mixture were in clusters, and the larger clusters would not decompose even at the high temperature of 3500 K. The “lower” external temperature cannot drove the clusters composed of so many C atoms to change. To put it briefly, CL-20 would speed up HMX’s thermolysis and alter the system’s overall response mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Muravyev NV, Fershtat L, Zhang Q. Synthesis, design and development of energetic materials: Quo Vadis. Chem Eng J. 2024;486:150410. https://doi.org/10.1016/j.cej.2024.150410.

    Article  CAS  Google Scholar 

  2. Zhong K, Zhang CY. Review of the decomposition and energy release mechanisms of novel energetic materials. Chem Eng J. 2024;483:149202. https://doi.org/10.1016/j.cej.2024.149202.

    Article  CAS  Google Scholar 

  3. Hao LN, Liu XQ, Zhai DD, Qiu L, Ma CM, Ma P, Jiang JC. Theoretical studies on the performance of HMX with different energetic groups. ACS Omega. 2020;5(46):29922–34. https://doi.org/10.1021/acsomega.0c04237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh H, Jahagirdar N, Banerjee S. Sonochemically assisted synthesis of nano HMX. Def Technol. 2019;15(6):837–43. https://doi.org/10.3969/j.issn.2214-9147.2019.06.002.

    Article  Google Scholar 

  5. Xu JJ, Cheng KM, Zhang HB, Hao XF, Xu XM, Sun J, Tian Y. Effect of metal ion impurities on the crystallization and thermal properties of HMX. J Therm Anal Calorim. 2022;147:6109–18. https://doi.org/10.1007/s10973-021-10850-y.

    Article  CAS  Google Scholar 

  6. Viswanath JV, Venugopal KJ, Rao NVS, Venkataraman A. An overview on importance, synthetic strategies and studies of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (HNIW). Def Technol. 2016;12(5):401–18. https://doi.org/10.1016/j.dt.2016.05.002.

    Article  Google Scholar 

  7. Nair UR, Sivabalan R, Gore GM, Geetha M, Asthana SN, Singh H. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations. Combust Explos Shock Waves. 2005;41:121–32. https://doi.org/10.1007/s10573-005-0014-2.

    Article  Google Scholar 

  8. Kalman J, Essel J. Influence of particle size on the combustion of CL-20/HTPB propellants. Propellants Explos Pyrotech. 2017;42(11):1261–7. https://doi.org/10.1002/prep.201700137.

    Article  CAS  Google Scholar 

  9. Liang WT, Sun XY, Wang H, Wang JK, Sui ZS, Ren HC, Dai RC, Zheng XX, Wang ZP, Duan XH, Zhang ZM. Isothermal structural evolution of CL-20/HMX cocrystals under slow roasting at 190 °C. Phys Chem Chem Phys. 2023;25(23):15756–66. https://doi.org/10.1039/D3CP01084H.

    Article  CAS  PubMed  Google Scholar 

  10. Jangid SK, Talawar MB, Singh MK, Nath T, Sinha RK. Experimental studies on advanced sheet explosive formulations based on 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (CL-20) and Hydroxyl Terminated polybutadiene (HTPB), and comparison with a RDX-based system. Cent Eur J Energ Mater. 2016;13(1):135–47. https://doi.org/10.22211/cejem/64968.

    Article  CAS  Google Scholar 

  11. Zhao XT, Li JZ, Quan SX, Fu XL, Meng SQ, Jiang LP, Fan XZ. Study on the effect of solvent on cocrystallization of CL-20 and HMX through theoretical calculations and experiments. RSC Adv. 2022;12(33):21255–63. https://doi.org/10.1039/d2ra03730k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hang GY, Yu WL, Wang T, Wang JT. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model. 2019;25(1):10. https://doi.org/10.1007/s00894-018-3887-1.

    Article  CAS  PubMed  Google Scholar 

  13. Yan QL, Zeman S, Elbeih A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta. 2012;537:1–12. https://doi.org/10.1016/j.tca.2012.03.009.

    Article  CAS  Google Scholar 

  14. Herrmannsdörfer D, Stierstorfer J, Klapötke TM. Solubility behaviour of CL-20 and HMX in organic solvents and solvates of CL-20. Energ Mater Front. 2021;2(1):51–61. https://doi.org/10.1016/j.enmf.2021.01.004.

    Article  CAS  Google Scholar 

  15. Sun SH, Zhang HB, Liu Y, Xu JJ, Huang SL, Wang SM, Sun J. Transitions from separately crystallized CL-20 and HMX to CL-20/HMX cocrystal based on solvent media. Cryst Growth Des. 2018;18(1):77–84. https://doi.org/10.1021/acs.cgd.7b00775.

    Article  CAS  Google Scholar 

  16. Liu ZC, Wu Q, Zhu WH, Xiao HM. Insights into the roles of two constituents CL-20 and HMX in the CL-20: HMX cocrystal at high pressure: a DFT-D study. RSC Adv. 2015;5(43):34216–25. https://doi.org/10.1039/c5ra01829c.

    Article  CAS  Google Scholar 

  17. Zhang J, Guo W. The role of electric field on decomposition of CL-20/HMX cocrystal: a reactive molecular dynamics study. J Comput Chem. 2021;42(31):2202–12. https://doi.org/10.1002/jcc.26748.

    Article  CAS  PubMed  Google Scholar 

  18. Xue X, Ma Y, Zeng Q, Zhang CY. Initial decay mechanism of the heated CL-20/HMX cocrystal: a case of the cocrystal mediating the thermal stability of the two pure components. J Phys Chem C. 2017;121(9):4899–908. https://doi.org/10.1021/acs.jpcc.7b00698.

    Article  CAS  Google Scholar 

  19. Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX. Cryst Growth Des. 2012;12(9):4311–4. https://doi.org/10.1021/cg3010882.

    Article  CAS  Google Scholar 

  20. Anderson SR, am Ende DJ, Salan JS, Samuels P. Preparation of an energetic‐energetic cocrystal using resonant acoustic mixing. Propellants Explos Pyrotech. 2014;39(5):637–40. https://doi.org/10.1002/prep.201400092.

    Article  CAS  Google Scholar 

  21. Song CK, An CW, Zhang YR, Ye BY, Li HQ, Wang JY. Insensitive CL-20/Cyclotetramethylenetetranitramine (HMX) co-crystals with high performance by ultrasonic in solvent. Int J Energ Mater Chem Propul. 2017;16(4):321. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2018022517.

    Article  CAS  Google Scholar 

  22. Zhou S, Pang A, Tang G. Crystal transition behaviors of CL-20 in polyether solid propellants plasticized by nitrate esters containing both HMX and CL-20. New J Chem. 2017;41(24):15064–71. https://doi.org/10.1039/c7nj03309e.

    Article  CAS  Google Scholar 

  23. Ding L, Zhao FQ, Liu ZR. Thermal decomposition of CL-20/HMX mixed system. J Solid Rocket Technol. 2008;02:164–7. https://doi.org/10.3969/j.issn.1006-2793.2008.02.016.

    Article  Google Scholar 

  24. Xie HM, Zhu WH. Thermal decomposition mechanisms of the energetic benzotrifuroxan: 1, 3,3-trinitroazetidine cocrystal using ab initio molecular dynamics simulations. J Chin Chem Soc. 2020;67(2):218–26. https://doi.org/10.1002/jccs.201900169.

    Article  CAS  Google Scholar 

  25. Yuan XF, Zhang SH, Gou RJ, Huang Y, Bai H, Guo QJ. ReaxFF/lg molecular dynamics study on thermolysis mechanism of NTO/HTPB plastic bonded explosive. Comput Theor Chem. 2022;1215:113834. https://doi.org/10.1016/j.comptc.2022.113834.

    Article  CAS  Google Scholar 

  26. Parepalli P, Nguyen YT, Sen O, Hardin DB, Molek CD, Welle EJ, Udaykumar HS. Multi-scale modeling of shock initiation of a pressed energetic material III: effect of Arrhenius chemical kinetic rates on macro-scale shock sensitivity. J Appl Phys. 2024;135:085106. https://doi.org/10.1063/5.0187735.

    Article  CAS  Google Scholar 

  27. Long Y, Chen J. Theoretical study of the interfacial force-field and thermodynamic properties for HMX-Estane mixture explosives. Propellants Explos Pyrotech. 2024;49:e202300265. https://doi.org/10.1002/prep.202300265.

    Article  CAS  Google Scholar 

  28. Yuan XF, Huang Y, Zhang SH, Gou RJ, Zhu SF, Guo QJ. Multi-aspect simulation insight on thermolysis mechanism and interaction of NTO/HMX-based plastic-bonded explosives: a new conception of the mixed explosive model. Phys Chem Chem Phys. 2023;25(31):20951–68. https://doi.org/10.1039/d3cp00494e.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao XQ, Shi NC. The crystal structure of ε-Hexnitrohexazaisowurtzitane. Chin Sci Bull. 1995;40(23):2158–60. https://doi.org/10.1360/csb1995-40-23-2158.

    Article  Google Scholar 

  30. Bolotina NB, Hardie MJ, Speer JRL, Pinkerton AA. Energetic materials: variable-temperature crystal structures of γ-and ∊-HNIW polymorphs. J Appl Crystallogr. 2004;37(5):808–14. https://doi.org/10.1107/S0021889804017832.

    Article  CAS  Google Scholar 

  31. Xu XJ, Xiao JJ, Huang H, Li JS, Xiao HM. Molecular dynamic simulations on the structures and properties of ɛ-CL-20 (0 0 1)/F2314 PBX. J Hazard Mater. 2010;175(1–3):423–8. https://doi.org/10.1016/j.jhazmat.2009.10.023.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM. Study on structure, sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation. Comput Theor Chem. 2012;999:21–7. https://doi.org/10.1016/j.comptc.2012.08.006.

    Article  CAS  Google Scholar 

  33. Bai H, Gou RJ, Chen MH, Zhang SH, Chen YH. ReaxFF/lg molecular dynamics study on thermal decomposition mechanism of 1-methyl-2, 4, 5-trinitroimidazole. Comput Theor Chem. 2022;1209:113594. https://doi.org/10.1016/j.comptc.2022.113594.

    Article  CAS  Google Scholar 

  34. Jiang J, Jiang QL, Chen YH, Hao WZ, Liu YB, Zhang SH. ReaxFF MD simulations of thermolysis mechanism of 2, 6-diamino-3, 5-dinitropyrazine-1-oxidated. Comput Theor Chem. 2020;1185:112891. https://doi.org/10.1016/j.comptc.2020.112891.

    Article  CAS  Google Scholar 

  35. Yim WL, Liu Z. Application of ab initio molecular dynamics for a priori elucidation of the mechanism in unimolecular decomposition: the case of 5-nitro-2, 4-dihydro-3 H-1, 2, 4-triazol-3-one (NTO). J Am Chem Soc. 2001;123(10):2243–50. https://doi.org/10.1021/ja0019023.

    Article  CAS  PubMed  Google Scholar 

  36. Botcher TR, Beardall DJ, Wight CA, Fan LM, Burkey TJ. Thermal decomposition mechanism of NTO. J Phys Chem. 1996;100(21):8802–6. https://doi.org/10.1021/jp952984y.

    Article  CAS  Google Scholar 

  37. Sviatenko LK, Gorb L, Leszczynski J. NTO degradation by direct photolysis: DFT study. Struct Chem. 2023;34(1):23–31. https://doi.org/10.1007/s11224-022-01923-1.

    Article  CAS  Google Scholar 

  38. Ren CX, Li XX, Guo L. Reaction mechanisms in the thermal decomposition of CL-20 revealed by ReaxFF molecular dynamics simulations. Acta Phys Chim Sin. 2018;34(10):1151–62. https://doi.org/10.3866/PKU.WHXB201802261.

    Article  CAS  Google Scholar 

  39. Cao ZM, Zong WJ, Zhang JJ, Xiao CW, Huang JH, Liu W, Wei ZY, He CL. Desensitising effect of water film on initial decomposition of HMX crystal under nano-cutting conditions by ReaxFF MD simulations. Mol Simul. 2020;46(7):530–40. https://doi.org/10.1080/08927022.2020.1736289.

    Article  CAS  Google Scholar 

  40. Li YQ, Li B, Zhang D, Xie LF. Theoretical studies on CL-20/HMX based energetic composites under external electric field. Chem Phys Lett. 2021;778:138806. https://doi.org/10.1016/j.cplett.2021.138806.

    Article  CAS  Google Scholar 

  41. Liu LC, Liu Y, Zybin SV, Sun H, Goddard WA III. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J Phys Chem A. 2011;115(40):11016–22. https://doi.org/10.1021/jp201599t.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan XF, Guo QJ, Zhang SH, Gou RJ, Huang Y. Comprehensive study on thermal decomposition mechanism and interaction of 3-Nitro-1, 2, 4-Triazol-5-One/Poly-3-nitromethyl-3-methyloxetane plastic bonded explosives. J Anal Appl Pyrolysis. 2022;168:105753. https://doi.org/10.1016/j.jaap.2022.105753.

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68. https://doi.org/10.1016/S0040-6031(99)00253-1.

    Article  Google Scholar 

  44. Chen F, Jia FS, Chen Y, Li TH, Guo GQ, Dong L. Reaction molecular dynamics simulation of thermal decomposition of HMX at high temperature. J At Mol Phys. 2023;2025(02):111–6.

    Google Scholar 

  45. Li X, Jin B, Luo L, Chu S, Peng R. Study on the isothermal decomposition of CL-20/HMX co-crystal by microcalorimetry. Thermochim Acta. 2020;690:178665. https://doi.org/10.1016/j.tca.2020.178665.

    Article  CAS  Google Scholar 

  46. Zhou TT, Huang FL. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations. J Phys Chem B. 2011;115(2):278–87. https://doi.org/10.1021/jp105805w.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Zybin SV, Van Duin ACT, Dasgupta S, Goddard WA III, Kober EM. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7- tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. J Phys Chem A. 2009;113(40):10619–40. https://doi.org/10.1021/jp901353a.

    Article  CAS  PubMed  Google Scholar 

  48. Huo XY, Wang FF, Niu LL, Gou RJ, Zhang CY. Clustering rooting for the high heat resistance of some CHNO energetic materials. FirePhysChem. 2021;1(1):8–20. https://doi.org/10.1016/j.fpc.2021.02.007.

    Article  Google Scholar 

  49. Zhang YP, Yang Z, Li QK, He YH. Carbon-rich clusters and graphite-like structure formation during early detonation of 2, 4, 6-Trinitrotoluene (TNT) via molecular dynamics simulation. Acta Chim Sinica. 2018;76(7):556–63. https://doi.org/10.6023/A18040153.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fundamental Research Program of Shanxi Province (No. 20210302123055).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. Tianhao Li and Ling Dong performed molecular dynamics simulations. Guoqi Guo and Fang Chen processed and analyzed the calculated data, and wrote the first draft of the paper. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Fang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Chen, F., Li, T. et al. Comprehensive atomic insight into the whole process of thermolysis of HMX/CL-20 mixed explosives based on a brand-new layered model of mixed explosives. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13222-4

Keywords

Navigation