Skip to main content
Log in

Investigation of the effect of fins and magnetic field on flow maldistribution and two-phase mixture model simulation of nanofluid heat transfer in microchannel heat sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Many attempts were made in recent years to create effective heat exchange devices in an effort to save energy and raw resources while also taking economic and environmental concerns into account. A compacted cooling component called a liquid-cooled microchannel heat sink was utilized to provide electronic components higher heat dissipation rates and low temperatures. In this study, the finite volume method in three dimensions was used to simulate laminar flow of water/Al2O3 nanofluid (NF) with volume fractions (φ) ranging from 0 to 4 vol% at Reynolds numbers of 50, 100, 200, and 400 in steady states inside the microchannel (MC) under the influence of a homogeneous magnetic field with Ha = 0–40. When pure water was used as the working fluid, the numerical findings demonstrated that fins increase the rate of heat transfer (HT) by a factor of four. In contrast, water-Al2O3 doubled the HT rate in the bare MC. Ansys Fluent simulation software was utilized to consider the laminar, steady state, and incompressible flow of NF with constant thermophysical characteristics. The findings indicated that Fins create the HT 3.9 times greater than the smooth MC in pure water flow. When 4% of nanoparticles were added to the base fluid in a smooth wall MC, the pressure drop (∆P) in comparison to the flow of pure water increased 1.25 times. The pressure drop in the finned MC was double that of the NF flow at the same flow condition. The maximum performance evaluation criterion (PEC) for NF flow in a smooth channel was 2. The maximum PEC in a finned MC flowing pure water is 3, whereas the maximum PEC in a finned MC flowing NF was 7.5. The fins had a significantly greater impact on HT than the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

a :

Acceleration vector, ms2

c p :

Specific heat at constant pressure

D h :

Hydraulic diameter of any internal passage (Dh = 4rh = 4AcL /A), m

f :

Friction factor, defined on the basis of mean surface shear stress

k :

Thermal conductivity coefficient, Wm1 K1

L :

Length, m

Nu:

Nusselt number (αDh /k)

Δp :

Pressure drop, Pa

Pr:

Prandtl number (ηcp /λ)

q″ :

Heat flux, W m2

Re:

Reynolds number

r h :

Hydraulic radius (AcL /A), m

U :

Velocity, ms1

V :

Volume, m3

Β :

Thermal expansion coefficient of the mixture, K1

Φ:

Nanoparticles volume fraction

Δ:

Denotes difference

µ :

Dynamic viscosity, Pa s

μ 0 :

Magnetic penetrability of vacuum, kg m s−2 A−2

ρ :

Density, kg m3

References

  1. Morshedzadeh E, Dunkenberger MB, Nagle L, Ghasemi S, York L, Horn K. Tapping into community expertise: stakeholder engagement in the design process. Policy Design and Practice. 2022;5(4):529–49.

    Article  Google Scholar 

  2. Jones D, Ghasemi S, Gračanin D, Azab M (2023) Privacy, safety, and security in extended reality: user experience challenges for neurodiverse users, HCI International 14045 (Springer Nature Switzerland), pp 511–528

  3. Shirazi M, Shateri A, Bayareh M. Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder. J Therm Anal Calorim. 2018;133:1061–73.

    Article  CAS  Google Scholar 

  4. Atashafrooz M, Sajjadi H. Amin Amiri Delouei, Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J Magn Magn Mater. 2023;567: 170354.

    Article  CAS  Google Scholar 

  5. Atashafrooz M, Sajjadi H, Amiri Delouei A, Yang T-F, Yan W-M. Three-dimensional analysis of entropy generation for forced convection over an inclined step with presence of solid nanoparticles and magnetic force. Numer Heat Transf, Part A: Appl. 2021;80(6):318–35. https://doi.org/10.1080/10407782.2021.1944579.

    Article  CAS  Google Scholar 

  6. Sajjadi H, Mohammadifar H, Delouei AA. Investigation of the effect of the internal heating system position on heat transfer rate utilizing Cu/water nanofluid. J Therm Anal Calorime. 2020;139:2035–54.

    Article  CAS  Google Scholar 

  7. Sepyani M, Shateri A, Bayareh M. Investigating the mixed convection heat transfer of a nanofluid in a square chamber with a rotating blade. J Therm Anal Calorim. 2019;135:609–23.

    Article  CAS  Google Scholar 

  8. Gülmüş B, Muratçobanoğlu B, Mandev E, Afshari F. Experimental and numerical investigation of flow and thermal characteristics of aluminum block exchanger using surface-modified and recycled nanofluids. Int J Numer Meth Heat Fluid Flow. 2023;33(8):2685–709. https://doi.org/10.1108/HFF-12-2022-0721.

    Article  Google Scholar 

  9. Afshari F, Muratçobanoğlu B. Thermal analysis of Fe3O4/water nanofluid in spiral and serpentine mini channels by using experimental and theoretical models. Int J Environ Sci Technol. 2023;20:2037–52. https://doi.org/10.1007/s13762-022-04119-6.

    Article  CAS  Google Scholar 

  10. Jahanbakhshi A, Nadooshan AA, Bayareh M. Cooling of a lithium-ion battery using microchannel heatsink with wavy microtubes in the presence of nanofluid. J Energy Storage. 2022;49: 104128.

    Article  Google Scholar 

  11. Mandev E, Rahimpour S, Mohammadzadeh A, Sahin B, Afshari F, Teimuri-Mofrad R. Surface modification of fe3o4 nanoparticles for preparing stable water-based nanofluids. Heat Transf Res. 2022;53(18):39–55.

    Article  Google Scholar 

  12. Amiri Delouei A, Sajjadi H, Ahmadi G. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: experimental investigation. Water. 2022;14:4000. https://doi.org/10.3390/w14244000.

    Article  CAS  Google Scholar 

  13. Hedeshi M, Jalali A, Arabkoohsar A, Amiri Delouei A. Nanofluid as the working fluid of an ultrasonic-assisted double-pipe counter-flow heat exchanger. J Therm Anal Calorim. 2023;16:8579–91.

    Article  Google Scholar 

  14. Amiri Delouei A, Sajjadi H, Atashafrooz M, Hesari M, Ben Hamida MB, Arabkoohsar A. Louvered fin-and-flat tube compact heat exchanger under ultrasonic excitation. Fire. 2023;6(1):13. https://doi.org/10.3390/fire6010013.

    Article  Google Scholar 

  15. Rostami S, Nadooshan AA, Raisi A, Bayareh M. Modeling the thermal conductivity ratio of an antifreeze-based hybrid nanofluid containing graphene oxide and copper oxide for using in thermal systems. J Market Res. 2021;11:2294–304.

    CAS  Google Scholar 

  16. Amiri Delouei A, Sajjadi H, Ahmadi G. The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic-assisted liquid-cooled CPU radiator. Iran J Sci Technol Trans Mech Eng. 2023;48:239–52. https://doi.org/10.1007/s40997-023-00667-5.

    Article  Google Scholar 

  17. Delouei AA, Atashafrooz M, Sajjadi H, Karimnejad S. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger. Int Commun Heat Mass Transf. 2022;135:106098. https://doi.org/10.1016/j.icheatmasstransfer.2022.106098.

    Article  CAS  Google Scholar 

  18. Pourdel H, Afrouzi HH, Akbari OA, Miansari M, Toghraie D, Marzban A, Koveiti A. Numerical investigation of turbulent flow and heat transfer in flat tube: effect of dimples with operational goals. J Therm Anal Calorim. 2019;135:3471–83.

    Article  CAS  Google Scholar 

  19. Li P, Zhang D, Xie Y. Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion. Int J Heat Mass Transf. 2014;73:456–67.

    Article  CAS  Google Scholar 

  20. Lelea D. The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink. Int J Heat Mass Transf. 2011;54:3891–9.

    Article  CAS  Google Scholar 

  21. Sheikhzadeh GA, Ebrahim Qomi M, Hajialigol N, Fattahi A. Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel. Int J Nano Dimens. 2013;3(4):281–8.

    CAS  Google Scholar 

  22. Ngo TL, Kato Y, Nikitin K, Ishizuka T. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles. Exp Therm Fluid Sci. 2007;32(6):560–70.

    Article  CAS  Google Scholar 

  23. Celick I. Solution of magnetohydrodynamic flow in a rectangular duct by chebyshev polynomial method. Appl Math. 2012;3:58–65.

    Google Scholar 

  24. Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Sarlak S. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  25. Hosseinzadeh K, Roghani S, Mogharrebi A, Asadi A, Ganji D. Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J Therm Anal Calorim. 2021;143:1413–24.

    Article  CAS  Google Scholar 

  26. Pordanjani AH, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manage. 2019;198: 111886.

    Article  Google Scholar 

  27. Klemeš JJ, Wang Q-W, Varbanov PS, Zeng M, Chin HH, Lal NS, Li N-Q, Wang B, Wang X-C, Walmsley TG. Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation. Renew Sustain Energy Rev. 2020;120: 109644.

    Article  Google Scholar 

  28. Ramesh KN, Sharma TK, Rao GAP. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review. Arch Comput Methods Eng. 2021;28:3135–65.

    Article  Google Scholar 

  29. Gao J, Hu Z, Yang Q, Liang X, Wu H. Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress. Therm Sci Eng Progr. 2022;29:101203.

    Article  CAS  Google Scholar 

  30. Al-Baghdadi MAS, Noor ZM, Zeiny A, Burns A, Wen D. CFD analysis of a nanofluid-based microchannel heat sink. Therm Sci Eng Progr. 2020;20:100685.

    Article  Google Scholar 

  31. Japar WMAA, Sidik NAC, Saidur R, Asako Y, Yusof SNA. A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: current advancements and challenges. Nanotechnol Rev. 2020;9(1):1192–216.

    Article  CAS  Google Scholar 

  32. Lu K, Wang C, Wang C, Fan X, Qi F, He H. Topological structures for microchannel heat sink applications–a review. Manuf Rev. 2023;10:2.

    Google Scholar 

  33. Basit Shafiq M, Allauddin U, Qaisrani MA, Rehman T-U, Ahmed N, Usman Mushtaq M, Ali HM. Thermal performance enhancement of shell and helical coil heat exchanger using MWCNTs/water nanofluid. J Therm Anal Calorim. 2022;147(21):12111–26.

    Article  CAS  Google Scholar 

  34. Sriharan G, Harikrishnan S, Ali HM. Enhanced heat transfer characteristics of the mini hexagonal tube heat sink using hybrid nanofluids. Nanotechnology. 2022;33(47): 475403.

    Article  CAS  Google Scholar 

  35. Shiriny A, Bayareh M, Ahmadi Nadooshan A, Bahrami D. Forced convection heat transfer of water/FMWCNT nanofluid in a microchannel with triangular ribs. SN Appl Sci. 2019;1:1–11.

    Article  Google Scholar 

  36. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7(11):1687814015618155.

    Article  Google Scholar 

  37. Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Alipour H, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  38. Zhou J, Hatami M, Song D, Jing D. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. Int J Heat Mass Transf. 2016;103:715–24.

    Article  Google Scholar 

  39. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15): 153107.

    Article  Google Scholar 

  40. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib. Adv Mech Eng. 2016;8(4):1687814016641016.

    Article  Google Scholar 

  41. Yu L, Bian Y, Liu Y, Xu X. Experimental investigation on rheological properties of water based nanofluids with low MWCNT concentrations. Int J Heat Mass Transf. 2019;135:175–85.

    Article  CAS  Google Scholar 

  42. Turkyilmazoglu M. Performance of direct absorption solar collector with nanofluid mixture. Energy Convers Manage. 2016;114:1–10.

    Article  CAS  Google Scholar 

  43. Selimefendigil F, Öztop HF. Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int J Heat Mass Transf. 2014;78:741–54.

    Article  Google Scholar 

  44. Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E. 2017;88:60–76.

    Article  CAS  Google Scholar 

  45. Aminossadati S, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non-Linear Mech. 2011;46(10):1373–82.

    Article  Google Scholar 

  46. Eiamsa-ard S, Ploychay Y, Sripattanapipat S, Promvong P, An Experimental study of heat transfer and friction factor characteristics in a circular tube fitted with a helical tape, 20

  47. Roy U, Roy PK. Advances in heat intensification techniques in shell and tube heat exchanger, advanced analytic and control techniques for thermal systems with heat exchangers. Amsterdam: Elsevier; 2020. p. 197–207.

    Google Scholar 

  48. Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60:21–40.

    Article  CAS  Google Scholar 

  49. Zeghadnia L, Robert JL, Achour B. Explicit solutions for turbulent flow friction factor: a review, assessment and approaches classification. Ain Shams Eng J. 2019;10(1):243–52.

    Article  Google Scholar 

  50. Avci A, Karagoz I. A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes. Eur J Mech-B/Fluids. 2019;78:182–7.

    Article  Google Scholar 

  51. Marušić-Paloka E, Pažanin I. Effects of boundary roughness and inertia on the fluid flow through a corrugated pipe and the formula for the Darcy–Weisbach friction coefficient. Int J Eng Sci. 2020;152: 103293.

    Article  Google Scholar 

  52. Ghobadi B, Kowsary F, Veysi F. Optimization of heat transfer and pressure drop of the channel flow with baffle. High Temp Mater Processes (London). 2021;40(1):286–99.

    Article  CAS  Google Scholar 

  53. Babar H, Sajid MU, Ali HM. Viscosity of hybrid nanofluids: a critical review. Therm Sci. 2019;23(3):1713–54.

    Article  Google Scholar 

  54. Aghakhani S, Ghasemi B, Hajatzadeh Pordanjani A, Wongwises S, Afrand M. Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. Int J Numer Methods Heat Fluid Flow. 2019;29(4):1249–71.

    Article  Google Scholar 

  55. Qasem NA, Zubair SM. Compact and microchannel heat exchangers: a comprehensive review of air-side friction factor and heat transfer correlations. Energy Convers Manage. 2018;173:555–601.

    Article  Google Scholar 

  56. Sun B, Guo Y, Yang D, Li H. The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes. Appl Therm Eng. 2020;171:114920.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scientific Research Fund of Hunan Provincial Education Department (No.15C1240) and Innovation platform open fund Project (No.16K080) and Scientific Research Fund of Hunan Provincial Education Department (NO.20C1651). The authors are thankful to the Russian Government and Research Institute of Mechanical Engineering. Department of Vibration Testing and Equipment Condition Monitoring, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation for their support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruichen Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, R., Torii, S., Sajadi, S.M. et al. Investigation of the effect of fins and magnetic field on flow maldistribution and two-phase mixture model simulation of nanofluid heat transfer in microchannel heat sink. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13122-7

Keywords

Navigation