Skip to main content
Log in

Review on cooling techniques and analysis methods of an electric vehicle motor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Electric motor is a critical component of an electric vehicle, and proper thermal management is essential for its efficient and reliable operation. As the electric vehicle industry continues to evolve, there is a growing demand for electric motors that can deliver superior performance and high efficiency. These motors are expected to be more powerful and provide higher torque, speed, and power density to meet the performance requirements of electric vehicles; therefore, effective cooling is essential to maintain optimal motor temperature. Improper thermal management causes several issues in electric motors, including demagnetization of magnets, insulation materials aging, reduced efficiency, shorter lifespan, and motor burnout. This article presents a brief review of cooling techniques for electric motors through both numerical and experimental investigations. The researchers have evaluated various cooling techniques for electric motors, which can be broadly categorized as active cooling, passive cooling, and hybrid cooling techniques. This review highlights the temperature variations in different motor components when these cooling techniques are employed, along with the methods used to analyze the motor under different operating conditions and parameters. In conclusion, the paper recommends the most effective cooling techniques for electric motor components based on the analysis performed, providing reasons for their selection. Liquid cooling and passive cooling techniques are found to be efficient thermal management techniques for which the findings are elaborated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Abbreviations

AEA:

All electric aircraft

AFPMSM:

Axial flux permanent magnet synchronous motor

AIN:

Aluminum nitride

ANN:

Artificial neural network

BLDC:

Brushless DC motor

CAD:

Computer-aided design

CFD:

Computational fluid dynamics

CHC:

Channel cooling

DSC:

Direct slot cooling

DWHX:

Direct winding heat exchanger

EC:

Evaporative cooling

ETC:

End tip cooling

EV:

Electric vehicle

FEA:

Finite element analysis

FEPM:

Fully enclosed permanent magnet motor

HP:

Heat pipe

HTC:

Heat transfer coefficient in W m-2 K-2

HWDS:

Highway driving schedule

IM:

Induction motor

IPM:

Interior permanent magnet

IPMSM:

Interior permanent magnet synchronous motor

JC:

Jacket cooling

LPTN:

Lumped parameter thermal network

PCM:

Phase change material

PM:

Permanent magnet

PMSM:

Permanent magnet synchronous motor

RAVH:

Rotor axial vent hole

RCPI:

Rotor cooling performance index

RM:

Rounding module

SAVH:

Stator axial vent hole

SEME:

Straight embedded module enclosure

SRM:

Synchronous reluctance motor

UDDS:

Urban dynamometer driving schedule

WJC:

Water jacket cooling

°C:

Temperature in degree Celsius

2D:

2-Dimensional

3D:

3-Dimensional

dT:

Temperature difference

hp:

Horse power

I :

Current in amp

K :

Temperature in kelvin

k :

Loss coefficient

kW:

Power in kilowatts

min:

Time in minutes

s :

Time in seconds

R :

Resistance in ohms

σ :

Stefan-Boltzmann constant (W m-2 K-4).

ε :

Emissivity of the surface

ω :

Angular frequency (rad/s)

β :

Steinmetz constant

Cu:

Copper

Iron:

Iron

Ph:

Phase

References

  1. Bilgin B, Emadi A. Electric motors in electrified transportation: a step toward achieving a sustainable and highly efficient transportation system. IEEE Power Electron Magaz. 2014;1:10–7. https://doi.org/10.1109/MPEL.2014.2312275.

    Article  Google Scholar 

  2. Arbab N, Wang W, Lin C, et al. Thermal modeling and analysis of a double-stator switched reluctance motor. IEEE Trans Energy Convers. 2015;30:1209–17. https://doi.org/10.1109/TEC.2015.2424400.

    Article  Google Scholar 

  3. Kahourzade S, Mahmoudi A, Ping HW, Uddin MN. A comprehensive review of axial-flux permanent-magnet machines. Can J Electr Comput Eng. 2014;37:19–33.

    Article  Google Scholar 

  4. Gronwald PO, Kern TA. Traction motor cooling systems: a literature review and comparative study. IEEE Trans Transp Electrification. 2021;7:2892–913.

    Article  Google Scholar 

  5. Gai Y, Kimiabeigi M, Chuan Chong Y, et al. Cooling of automotive traction motors: schemes, examples, and computation methods. IEEE Trans Industr Electron. 2019;66:1681–92. https://doi.org/10.1109/TIE.2018.2835397.

    Article  Google Scholar 

  6. Wang X, Li B, Gerada D, et al. A critical review on thermal management technologies for motors in electric cars. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2021.117758.

    Article  Google Scholar 

  7. Huynh TA, Hsieh MF. Improvement of traction motor performance for electric vehicles using conductors with insulation of high thermal conductivity considering cooling methods. IEEE Trans Magn. 2021. https://doi.org/10.1109/TMAG.2020.3021127.

    Article  Google Scholar 

  8. Salameh F, Picot A, Chabert M, Maussion P. Parametric and nonparametric models for lifespan modeling of insulation systems in electrical machines. IEEE Trans Ind Appl. 2017;53:3119–28. https://doi.org/10.1109/TIA.2016.2635100.

    Article  CAS  Google Scholar 

  9. Zhang X, Yang Q, Ma M, et al. A switched reluctance motor torque ripple reduction strategy with deadbeat current control and active thermal management. IEEE Trans Veh Technol. 2020;69:317–27. https://doi.org/10.1109/TVT.2019.2955218.

    Article  Google Scholar 

  10. Polikarpova M, Ponomarev P, Lindh P, et al. Hybrid cooling method of axial-flux permanent-magnet machines for vehicle applications. IEEE Trans Industr Electron. 2015;62:7382–90. https://doi.org/10.1109/TIE.2015.2465354.

    Article  Google Scholar 

  11. Fang G, Yuan W, Yan Z, et al. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor. Appl Therm Eng. 2019;152:594–604. https://doi.org/10.1016/j.applthermaleng.2019.02.120.

    Article  Google Scholar 

  12. Li B, Kuo H, Wang X, et al. Thermal management of electrified propulsion system for low-carbon vehicles. Automot Innov. 2020;3:299–316. https://doi.org/10.1007/s42154-020-00124-y.

    Article  Google Scholar 

  13. Gundabattini E, Kuppan R, Solomon DG, et al. A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Eng J. 2021;12:497–505.

    Article  Google Scholar 

  14. Yamazaki K, Fukushima N. Iron-loss modeling for rotating machines: comparison between bertotti’s three-term expression and 3-d eddy-current analysis. IEEE Trans Magn. 2010;46:3121–4. https://doi.org/10.1109/TMAG.2010.2044384.

    Article  Google Scholar 

  15. Ionel D, Popescu M, Cossar C, McGilp MI, Boglietti A, Cavagnino A (2008) A general model of the laminated steel losses in electric motors with PWM voltage supply. In: IEEE Industry Applications Society Annual Meeting. IEEE

  16. Luomi J, Zwyssig C, Looser A, Kolar JW. Efficiency optimization of a 100-W 500 000-r/min permanent-magnet machine including air-friction losses. IEEE Trans Ind Appl. 2009;45:1368–77. https://doi.org/10.1109/TIA.2009.2023492.

    Article  Google Scholar 

  17. Huang Z, Fang J, Liu X, Han B. Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines. IEEE Trans Industr Electron. 2016;63:2027–35. https://doi.org/10.1109/TIE.2015.2500188.

    Article  Google Scholar 

  18. Schwarz KK. Survey of basic stray losses in squirrel-cage induction motors. Proc Inst Electric Eng. 1964;111:1565–74.

    Article  Google Scholar 

  19. Howey DA, Holmes AS, Pullen KR. Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines. IEEE Trans Ind Appl. 2011;47:1716–23. https://doi.org/10.1109/TIA.2011.2156371.

    Article  Google Scholar 

  20. Tüysüz A, Meyer F, Steichen M, et al. Advanced cooling methods for high-speed electrical machines. IEEE Trans Ind Appl. 2017;53:2077–87. https://doi.org/10.1109/TIA.2017.2672921.

    Article  Google Scholar 

  21. Dong B, Wang K, Han B, Zheng S. Thermal analysis and experimental validation of a 30 kW 60000 r/min high-speed permanent magnet motor with magnetic bearings. IEEE Access. 2019;7:92184–92. https://doi.org/10.1109/ACCESS.2019.2927464.

    Article  Google Scholar 

  22. Tikadar A, Kumar N, Joshi Y, Kumar S* (2020) Coupled electro-thermal analysis of permanent magnet synchronous motor for electric vehicles. In: 19th IEEE ITHERM Conference (ed) 19th IEEE ITHERM Conference. IEEE, pp. 249–256

  23. Guo C, Long L, Wu Y, et al. Electromagnetic-thermal coupling analysis of a permanent-magnet in-wheel motor with cooling channels in the deepened stator slots. Case Stud Therm Eng. 2022. https://doi.org/10.1016/j.csite.2022.102158.

    Article  Google Scholar 

  24. Nakahama T, Biswas D, Kawano K, Ishibashi F. Improved cooling performance of large motors using fans. IEEE Trans Energy Convers. 2006;21:324–31. https://doi.org/10.1109/TEC.2006.874245.

    Article  Google Scholar 

  25. Galloni E, Parisi P, Marignetti F, Volpe G. CFD analyses of a radial fan for electric motor cooling. Therm Sci Eng Prog. 2018;8:470–6. https://doi.org/10.1016/j.tsep.2018.10.003.

    Article  Google Scholar 

  26. Yangsoo Lee SH. Thermal analysis of induction motor with forced cooling channels. IEEE Trans Magn. 2000;36:1398–402. https://doi.org/10.1109/20.877700.

    Article  Google Scholar 

  27. Baggu MM, Hess HL, Rink K (2005) Thermal modeling of “direct lamination cooling (DLC)” induction motor for hybrid electric vehicle applications. In: 2005 IEEE Vehicle Power and Propulsion Conference, VPPC. IEEE Computer Society, pp. 242–246

  28. Kral C, Haumer A, Haigis M, et al. Comparison of a CFD analysis and a thermal equivalent circuit model of a TEFC induction machine with measurements. IEEE Trans Energy Convers. 2009;24:809–18. https://doi.org/10.1109/TEC.2009.2025428.

    Article  Google Scholar 

  29. Ahmed F, Ghosh E, Kar NC (2016) Transient thermal analysis of a copper rotor induction motor using a lumped parameter temperature network model. In: 2016 IEEE Transportation Electrification Conference and Expo, ITEC 2016. Institute of Electrical and Electronics Engineers Inc.

  30. Cavazzuti M, Gaspari G, Pasquale S, Stalio E. Thermal management of a formula E electric motor: analysis and optimization. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.113733.

    Article  Google Scholar 

  31. Mezani S, Takorabet N, Laporte B. A combined electromagnetic and thermal analysis of induction motors. IEEE Trans Magn. 2005;41:1572–5. https://doi.org/10.1109/TMAG.2005.845044.

    Article  Google Scholar 

  32. Boglietti A, Cavagnino A, Staton DA. TEFC induction motors thermal models: a parameter sensitivity analysis. IEEE Trans Ind Appl. 2005;41:756–63. https://doi.org/10.1109/TIA.2005.847311.

    Article  Google Scholar 

  33. Sim K, Lee YB, Jang SM, Kim TH. Thermal analysis of high-speed permanent magnet motor with cooling flows supported on gas foil bearings: part I-coupled thermal and loss modeling. J Mech Sci Technol. 2015;29:5469–76. https://doi.org/10.1007/s12206-015-1148-0.

    Article  Google Scholar 

  34. Aldaghi A, Banejad A, Kalani H, et al. An experimental study integrated with prediction using deep learning method for active/passive cooling of a modified heat sink. Appl Therm Eng. 2023. https://doi.org/10.1016/j.applthermaleng.2022.119522.

    Article  Google Scholar 

  35. Grabowski M, Urbaniec K, Wernik J, Wołosz KJ. Numerical simulation and experimental verification of heat transfer from a finned housing of an electric motor. Energy Convers Manag. 2016;125:91–6. https://doi.org/10.1016/j.enconman.2016.05.038.

    Article  Google Scholar 

  36. Kim C, Lee KS. Thermal nexus model for the thermal characteristic analysis of an open-type air-cooled induction motor. Appl Therm Eng. 2017;112:1108–16. https://doi.org/10.1016/j.applthermaleng.2016.10.197.

    Article  Google Scholar 

  37. Kim C, Lee KS, Yook SJ. Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor. Appl Therm Eng. 2016;100:658–67. https://doi.org/10.1016/j.applthermaleng.2016.02.077.

    Article  Google Scholar 

  38. Fawzal AS, Cirstea RM, Gyftakis KN, et al. Fan performance analysis for rotor cooling of axial flux permanent magnet machines. IEEE Trans Ind Appl. 2017;53:3295–304. https://doi.org/10.1109/TIA.2017.2675986.

    Article  Google Scholar 

  39. Fawzal AS, Cirstea RM, Woolmer TJ, et al. Air inlet/outlet arrangement for rotor cooling application of axial flux PM machines. Appl Therm Eng. 2018;130:1520–9. https://doi.org/10.1016/j.applthermaleng.2017.11.121.

    Article  Google Scholar 

  40. Chang CC, Kuo YF, Wang JC, Chen SL. Air cooling for a large-scale motor. Appl Therm Eng. 2010;30:1360–8. https://doi.org/10.1016/j.applthermaleng.2010.02.023.

    Article  Google Scholar 

  41. Tanguy D, Harmand S, Pellé J, Yu R (2014) Erratum: Experimental study of oil cooling systems for electric motors (Applied Thermal Engineering). Appl Therm Eng 71

  42. Lim DH, Kim SC. Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles. Appl Therm Eng. 2014;63:577–87. https://doi.org/10.1016/j.applthermaleng.2013.11.057.

    Article  Google Scholar 

  43. Cao J, Zhou B, Li D, et al (2022) Analysis of heat transfer and cooling structure of dual-waterway parallel axial flux permanent magnet synchronous motor for electric vehicles. In: Proceedings-2022 7th Asia Conference on Power and Electrical Engineering, ACPEE 2022. Institute of Electrical and Electronics Engineers Inc., pp. 992–997

  44. Wang X, Li B, Huang K, et al. Experimental investigation on end winding thermal management with oil spray in electric vehicles. Case Stud Therm Eng. 2022. https://doi.org/10.1016/j.csite.2022.102082.

    Article  Google Scholar 

  45. Tikadar A, Johnston D, Kumar N, et al. Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors. Appl Therm Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2020.116182.

    Article  Google Scholar 

  46. Park MH, Kim SC. Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles. Appl Therm Eng. 2019;152:582–93. https://doi.org/10.1016/j.applthermaleng.2019.02.119.

    Article  Google Scholar 

  47. Tikadar A, Joshi Y, Kumar S (2022) Comparison between Direct Winding Heat Exchanger and Slot-liner Confined Evaporative Cooling of Electric Motor. In: InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM. IEEE Computer Society

  48. Tikadar A, Kim JW, Joshi Y, Kumar S. Flow-assisted evaporative cooling for electric motor. IEEE Trans Transp Electrification. 2022;8:1128–43. https://doi.org/10.1109/TTE.2021.3107505.

    Article  Google Scholar 

  49. Park J, An J, Han K, et al. Enhancement of cooling performance in traction motor of electric vehicle using direct slot cooling method. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.119082.

    Article  Google Scholar 

  50. Le W, Lin M, Lin K, et al. A rotor cooling enhanced method for axial flux permanent magnet synchronous machine with housing-cooling. IEEE Trans Appl Supercond. 2021. https://doi.org/10.1109/TASC.2021.3103728.

    Article  Google Scholar 

  51. Veg L, Laksar J (2019) Comparison of two types of cooling of axial flux permanent magnet machines by CFD simulation. In: International Conference on Electical Drives and Power Electronics. KoREMA, pp. 303–306

  52. Peng Q, Cao J, Li D, An G (2021) Water cooling structure design and temperature field analysis of low floor direct drive permanent magnet synchronous motor. In: Proceedings of 2021 IEEE 4th International Electrical and Energy Conference, CIEEC 2021. Institute of Electrical and Electronics Engineers Inc.

  53. Rehman Z, Seong K. Three-D numerical thermal analysis of electric motor with cooling jacket. Energies (Basel). 2018. https://doi.org/10.3390/en11010092.

    Article  Google Scholar 

  54. Hu G, Wei Z, Chen X, Zhou Y (2021) The Thermal Analysis of Permanent Magnet Synchronous In-Wheel Motor Based on Thermal Network Method. In: 2021 4th International Conference on Energy, Electrical and Power Engineering, CEEPE 2021. Institute of Electrical and Electronics Engineers Inc., pp. 399–404

  55. Wu S, Hao D, Tong W. Temperature field analysis of mine flameproof outer rotor permanent magnet synchronous motor with different cooling schemes. CES Trans Electric Mach Syst. 2022;6:162–9. https://doi.org/10.30941/cestems.2022.00022.

    Article  Google Scholar 

  56. Lindh P, Petrov I, Immonen P, et al. Performance of a direct-liquid-cooled motor in an electric bus under different load cycles. IEEE Access. 2019;7:86897–905. https://doi.org/10.1109/ACCESS.2019.2925711.

    Article  Google Scholar 

  57. Lim DH, Lee MY, Lee HS, Kim SC. Performance evaluation of an in-wheel motor cooling system in an electric vehicle/hybrid electric vehicle. Energies (Basel). 2014;7:961–71. https://doi.org/10.3390/en7020961.

    Article  Google Scholar 

  58. Garud KS, Hwang SG, Han JW, Lee MY. Performance characteristics of the direct spray oil cooling system for a driving motor of an electric vehicle. Int J Heat Mass Transf. 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123228.

    Article  Google Scholar 

  59. Ye L, Tao F, Qi L, Xuhui W (2016) Experimental investigation on heat transfer of directly-oil-cooled permanent magnet motor; Experimental investigation on heat transfer of directly-oil-cooled permanent magnet motor

  60. Volpe G, Chong YC, Staton DA, Popescu M (2018) Thermal management of a racing e- machine. In: Proceedings-2018 23rd International Conference on Electrical Machines, ICEM 2018. Institute of Electrical and Electronics Engineers Inc., pp. 2689–2694

  61. Kovacik M, Rafajdus P, Stano M (2022) Analysis of loss and thermal performance of high speed PMSM for automotive application. In: 14th International Conference ELEKTRO, ELEKTRO 2022-Proceedings. Institute of Electrical and Electronics Engineers Inc.

  62. Thangaraju SK, Rajoo S, Munisamy KM (2021) Numerical analysis of oil cooled pmsm jacket with horizontal strips design. In: 2021 4th Asia Conference on Energy and Electrical Engineering, ACEEE 2021. Institute of Electrical and Electronics Engineers Inc., pp. 127–130

  63. Lee KH, Cha HR, Kim YB. Development of an interior permanent magnet motor through rotor cooling for electric vehicles. Appl Therm Eng. 2016;95:348–56. https://doi.org/10.1016/j.applthermaleng.2015.11.022.

    Article  Google Scholar 

  64. Wang H, Liu X, Kang M, et al. Oil injection cooling design for the IPMSM applied in electric vehicles. IEEE Trans Transp Electrification. 2022;8:3427–40. https://doi.org/10.1109/TTE.2022.3161064.

    Article  Google Scholar 

  65. Nonneman J, Van Der Sijpe B, T’Jollyn I, et al (2021) Evaluation of high performance rotor cooling techniques for permanent magnet electric motors. In: 2021 IEEE International Electric Machines and Drives Conference, IEMDC 2021. Institute of Electrical and Electronics Engineers Inc.

  66. Zhu G, Li L, Mei Y, et al. Design and analysis of a self-circulated oil cooling system enclosed in hollow shafts for axial-flux PMSMs. IEEE Trans Veh Technol. 2022;71:4879–88. https://doi.org/10.1109/TVT.2022.3154150.

    Article  Google Scholar 

  67. Gai Y, Chong YC, Adam H, et al (2019) Power losses and thermal analysis of a hollow-shaft rotor cooling system. In: 22nd International Conference on Electrical Machines and Systems (ICEMS)

  68. Nonneman J, Evans I, Vanhee S, et al (2022) Experimental investigation of a novel direct rotor cooling method for an interior permanent magnet synchronous machine. In: THERMINIC 2022-28th International Workshop on Thermal Investigations of ICs and Systems, Proceedings. Institute of Electrical and Electronics Engineers Inc.

  69. Faghri A. Heat pipe science and technology. Taylor and Francis Group; 1995.

    Google Scholar 

  70. Guo Y, Wang A (2021) Thermal design and simulation of winding cooling for permanent magnet synchronous motor of electric vehicle. In: 2021 IEEE 4th Student Conference on Electric Machines and Systems, SCEMS 2021-Proceedings. Institute of Electrical and Electronics Engineers Inc.

  71. Dong C, Qian Y, Zhang Y, et al. (2020) Coupled thermal-electromagnetic parametric modeling of permanent magnet machine based on flat heat pipe cooling. In: 23rd International Conference on Electrical Machines and Systems, ICEMS 2020. Institute of Electrical and Electronics Engineers Inc., pp. 1689–1694

  72. Dong C, Hu X, Qian Y, et al. (2021) Thermal field analysis of electric propulsion drive motors with flat heat pipe cooling. In: ICEMS 2021-2021 24th International Conference on Electrical Machines and Systems. Institute of Electrical and Electronics Engineers Inc., pp. 495–500

  73. Dong C, Hu X, Qian Y, et al. Thermal management integrated with flat heat pipes for in-slot stator windings of electric motors. IEEE Trans Ind Appl. 2022. https://doi.org/10.1109/TIA.2022.3204239.

    Article  Google Scholar 

  74. Putra N, Ariantara B. Electric motor thermal management system using L-shaped flat heat pipes. Appl Therm Eng. 2017;126:1156–63. https://doi.org/10.1016/j.applthermaleng.2017.01.090.

    Article  Google Scholar 

  75. Zhang X, Zhang C*, Fu P, et al. (2018) A novel cooling technique for the windings of high-torque-density permanent magnet machines. In: 2018 21st International Conference on Electrical Machines and Systems (ICEMS) Oct 7–10, 2018 Jeju, Korea

  76. Aprianingsih N, Winarta A, Ariantara B, Putra N (2018) Thermal performance of pulsating heat pipe on electric motor as cooling application. In: E3S Web of Conferences. EDP Sciences

  77. Zhang C, Zhang X, Zhao F, et al. Improvements on permanent magnet synchronous motor by integrating heat pipes into windings for solar unmanned aerial vehicle. Green Energy Intel Transp. 2022;1:100011. https://doi.org/10.1016/j.geits.2022.100011.

    Article  Google Scholar 

  78. Wrobel R, Reay D. Heat pipe based thermal management of electrical machines–a feasibility study. Therm Sci Eng Prog. 2022. https://doi.org/10.1016/j.tsep.2022.101366.

    Article  Google Scholar 

  79. Yu Z, Li Y, Jing Y, Wang J. Cooling system of outer rotor SPMSM for a two-seater all-electric aircraft based on heat pipe technology. IEEE Trans Transp Electrification. 2022;8:1656–64. https://doi.org/10.1109/TTE.2021.3127555.

    Article  Google Scholar 

  80. Chai F, Cao Y, Pei Y (2022) Design and analysis of high torque density permanent magnet synchronous motor based on heat pipe. In: 2022 International Conference on Electrical Machines and Systems, ICEMS 2022. Institute of Electrical and Electronics Engineers Inc.

  81. Zhao H, Zhang X, Li J, et al. Heat pipe bending effect on cooling effectiveness in electrical machines. IEEE Trans Energy Convers. 2023;38:2011–21. https://doi.org/10.1109/TEC.2023.3249971.

    Article  Google Scholar 

  82. Geng R, Liu G, Mei T, et al (2023) Design of cooling system for high torque density permanent magnet synchronous motor based on heat pipe. In: IEEE Student Conference on Electric Machines and Systems (SCEMS). Institute of Electrical and Electronics Engineers

  83. Zhao H, Zhang X, Li J, et al. Effectiveness of thermal interface materials on electrical machines thermal performance with heat pipes. IEEE Trans Transp Electrification. 2023. https://doi.org/10.1109/TTE.2023.3274554.

    Article  Google Scholar 

  84. Wang JX, Li YZ, Wang SN, et al. Experimental investigation of the thermal control effects of phase change material based packaging strategy for on-board permanent magnet synchronous motors. Energy Convers Manag. 2016;123:232–42. https://doi.org/10.1016/j.enconman.2016.06.045.

    Article  Google Scholar 

  85. Wang S, Li YZ, Liu Y, et al (2015) Temperature control of permanent-magnet synchronous motor using phase change material. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. Institute of Electrical and Electronics Engineers Inc., pp. 1635–1640

  86. Wang S, Li Y, Li YZ, et al. Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging. Appl Therm Eng. 2016;109:251–60. https://doi.org/10.1016/j.applthermaleng.2016.08.036.

    Article  Google Scholar 

  87. Bellettre J, Sartre V, Biaist F, Lallemand A. Transient state study of electric motor heating and phase change solid-liquid cooliNG. Appl Therm Eng. 1997;17:17–31.

    Article  CAS  Google Scholar 

  88. Ayat S, Yon S, Serghine C, et al (2019) The use of phase change material for the cooling of electric machine windings formed with hollow conductors. IEEE

  89. Wang S, Li Y, Li YZ, et al. Conception and experimental investigation of a hybrid temperature control method using phase change material for permanent magnet synchronous motors. Exp Therm Fluid Sci. 2017;81:9–20. https://doi.org/10.1016/j.expthermflusci.2016.10.005.

    Article  Google Scholar 

  90. Liu X, Shi Y, Chu J, et al. A new phase-change cooling method for the frequent start-stop electric motor. Appl Therm Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2021.117504.

    Article  Google Scholar 

  91. Li B, Yuan Y, Gao P, et al. Cooling structure design for an outer-rotor permanent magnet motor based on phase change material. Therm Sci Eng Prog. 2022. https://doi.org/10.1016/j.tsep.2022.101406.

    Article  Google Scholar 

  92. Yao Y, Gu L, Fan T, et al (2011) Evaluation of heat transfer characteristic of Aluminum Nitride (AlN) potting compound for the end windings of permanent magnet synchronous machines. In: 2011 International Conference on Electrical and Control Engineering, ICECE 2011-Proceedings. Pp. 4498–4501

  93. Polikarpova M, Lindh PM, Tapia JA, Pyrhönen JJ (2014) Application of potting material for a 100 kW radial flux PMSM. In: Proceedings-2014 International Conference on Electrical Machines, ICEM 2014. Institute of Electrical and Electronics Engineers Inc., pp. 2146–2151

  94. Polikarpova M, Lindh P, Gerada C, et al. Thermal effects of stator potting in an axial-flux permanent magnet synchronous generator. Appl Therm Eng. 2015;75:421–9. https://doi.org/10.1016/j.applthermaleng.2014.09.044.

    Article  Google Scholar 

  95. Sun Y, Zhang S, Yuan W, et al. Applicability study of the potting material based thermal management strategy for permanent magnet synchronous motors. Appl Therm Eng. 2019;149:1370–8. https://doi.org/10.1016/j.applthermaleng.2018.12.141.

    Article  CAS  Google Scholar 

  96. Sun Y, Zhang S, Chen G, et al. Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2020.114970.

    Article  Google Scholar 

  97. Huang J, Shoai Naini S, Miller R, et al. A hybrid electric vehicle motor cooling system-design, model, and control. IEEE Trans Veh Technol. 2019;68:4467–78. https://doi.org/10.1109/TVT.2019.2902135.

    Article  Google Scholar 

  98. Li Y, Li Q, Fan T, Wen X. Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle. Energy Rep. 2023;9:282–8. https://doi.org/10.1016/j.egyr.2022.10.416.

    Article  Google Scholar 

  99. Chen W, Ju Y, Yan D, et al. Design and optimization of dual-cycled cooling structure for fully-enclosed permanent magnet motor. Appl Therm Eng. 2019;152:338–49. https://doi.org/10.1016/j.applthermaleng.2019.02.070.

    Article  Google Scholar 

  100. Zhang C-N, Guo F-L, Dong Y-G (2019) Oil-water composite cooling method of hub motor for electric vehicles

  101. Chang M, Lai B, Wang H, et al. Comprehensive efficiency analysis of air-cooled vs water-cooled electric motor for unmanned aerial vehicle. Appl Therm Eng. 2023. https://doi.org/10.1016/j.applthermaleng.2023.120226.

    Article  Google Scholar 

  102. Gammaidoni T, Zembi J, Battistoni M, et al. CFD analysis of an electric motor’s cooling system: model validation and solutions for optimization. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103349.

    Article  Google Scholar 

  103. He L, Feng Y, Zhang Y, Tong B. Methods for temperature estimation and monitoring of permanent magnet: a technology review and future trends. J Braz Soc Mech Sci Eng. 2024;46:174. https://doi.org/10.1007/s40430-024-04723-2.

    Article  Google Scholar 

  104. Tariq SL, Ali HM, Akram MA, et al. Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Appl Therm Eng. 2020;176:115305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.G.S. helped in idea for the article, literature search, and data analysis, V.P.T. was involved in literature search and draft review, A.S.D helped in critical revision of the work.

Corresponding author

Correspondence to Akshay G. Shewalkar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shewalkar, A.G., Dhoble, A.S. & Thawkar, V.P. Review on cooling techniques and analysis methods of an electric vehicle motor. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13091-x

Keywords

Navigation