Skip to main content
Log in

Enthalpies of mixing for alloys liquid below room temperature determined by oxidative solution calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fusible alloys, in particular gallium-based alloys liquid below room temperature (Ga-LMA), have applications in soft robotics, microelectronics, self-healing battery components, and 2D materials synthesis, making the study of their thermodynamic properties critical for the improvement and development of hybrid materials. To determine the enthalpies of formation/mixing of the eutectics for the binary Ga–In, the ternary Ga–In–Sn, and the quaternary Ga–In–Sn–Zn systems, a novel experimental calorimetric technique based on oxidative solution calorimetry was developed. The experimental results for the binary eutectic are consistent with previous data obtained by direct reaction and solution calorimetry, demonstrating the viability and precision of the experimental technique presented, which can now be extended to a large variety of liquid alloy systems at or below room temperature. To our knowledge, the heats of mixing in the ternary and quaternary systems represent the first reported experimental values. Both standard geometrical models and FactSage were used to calculate the enthalpies of mixing for these alloys, which agreed with the experimental data, providing a foundation to analyze the thermodynamics of other unknown Ga-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang X, Guo R, Liu J. Liquid metal based soft robotics materials, designs, and applications. Adv Mater Technol. 2018. https://doi.org/10.1002/admt.201800549.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu S, Sweatman K, McDonald S, Nogita K. Ga-based alloys in microelectronic interconnects: a review. Mater Basel Switz. 2018;11(8):1384. https://doi.org/10.3390/ma11081384.

    Article  CAS  Google Scholar 

  3. Kidanu WG, Hur J, Kim IT. Gallium-Indium-Tin eutectic as a self-healing room-temperature liquid metal anode for high-capacity lithium-ion batteries. Mater Basel Switz. 2021;15(1):168. https://doi.org/10.3390/ma15010168.

    Article  CAS  Google Scholar 

  4. Aukarasereenont P, Goff A, Nguyen CK, McConville CF, Elbourne A, Zavabeti A, Daeneke T. Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem Soc Rev. 2022;51(4):1253–76. https://doi.org/10.1039/D1CS01166A.

    Article  CAS  PubMed  Google Scholar 

  5. Narh KA, Dwivedi VP, Grow JM, Stana A, Shih W-Y. The effect of liquid gallium on the strengths of stainless steel and thermoplastics. J Mater Sci. 1998;33(2):329–37. https://doi.org/10.1023/A:1004359410957.

    Article  CAS  Google Scholar 

  6. Ren L, Xu X, Du Y, Kalantar-Zadeh K, Dou SX. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater Today. 2020;34:92–114. https://doi.org/10.1016/j.mattod.2019.10.007.

    Article  CAS  Google Scholar 

  7. Ma K-Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Phys Lett A. 2007;361(3):252–6. https://doi.org/10.1016/j.physleta.2006.09.041.

    Article  CAS  Google Scholar 

  8. Wang H, Peng Y, Peng H, Zhang J. Fluidic phase-change materials with continuous latent heat from theoretically tunable ternary metals for efficient thermal management. Proc Natl Acad Sci U S A. 2022;119(31): e2200223119. https://doi.org/10.1073/pnas.2200223119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shamberger PJ, Bruno NM. Review of metallic phase change materials for high heat flux transient thermal management applications. Appl Energy. 2020;258: 113955. https://doi.org/10.1016/j.apenergy.2019.113955.

    Article  CAS  Google Scholar 

  10. Deng Y-G, Liu J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A. 2009;95(3):907–15. https://doi.org/10.1007/s00339-009-5098-1.

    Article  CAS  Google Scholar 

  11. Tang S-Y, Tabor C, Kalantar-Zadeh K, Dickey MD. Gallium liquid metal: the devil’s elixir. Annu Rev Mater Res. 2021;51(1):381–408. https://doi.org/10.1146/annurev-matsci-080819-125403.

    Article  CAS  Google Scholar 

  12. Liu S, Li P, Zeng D. Research progress of liquid metal induced corrosion. Corros Sci Prot Techology. 2001;13(5):275–8.

    CAS  Google Scholar 

  13. Daalkhaijav U, Yirmibesoglu OD, Walker S, Mengüç Y. Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv Mater Technol. 2018;3(4):1700351. https://doi.org/10.1002/admt.201700351.

    Article  CAS  Google Scholar 

  14. Kong W, Wang Z, Wang M, Manning KC, Uppal A, Green MD, Wang RY, Rykaczewski K. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater. 2019;31(44):1904309. https://doi.org/10.1002/adma.201904309.

    Article  CAS  Google Scholar 

  15. Kong W, Wang Z, Casey N, Korah MM, Uppal A, Green MD, Rykaczewski K, Wang RY. High thermal conductivity in multiphase liquid metal and silicon carbide soft composites. Adv Mater Interfaces. 2021;8(14):2100069. https://doi.org/10.1002/admi.202100069.

    Article  CAS  Google Scholar 

  16. Idrus-Saidi SA, Tang J, Lambie S, Han J, Mayyas M, Ghasemian MB, Allioux F-M, Cai S, Koshy P, Mostaghimi P, Steenbergen KG, Barnard AS, Daeneke T, Gaston N, Kalantar-Zadeh K. Liquid metal synthesis solvents for metallic crystals. Science. 2022;378(6624):1118–24. https://doi.org/10.1126/science.abm2731.

    Article  CAS  PubMed  Google Scholar 

  17. Degtyareva O, McMahon MI, Allan DR, Nelmes RJ. Structural complexity in gallium under high pressure: relation to alkali elements. Phys Rev Lett. 2004;93(20): 205502. https://doi.org/10.1103/PhysRevLett.93.205502.

    Article  CAS  PubMed  Google Scholar 

  18. Yu Q, Ahmad AS, Ståhl K, Wang XD, Su Y, Glazyrin K, Liermann HP, Franz H, Cao QP, Zhang DX, Jiang JZ. Pressure-induced structural change in liquid gain eutectic alloy. Sci Rep. 2017;7(1):1139. https://doi.org/10.1038/s41598-017-01233-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koh A, HwangZavalij WYP, Chun S, Slipher G, Mrozek R. Solidification and melting phase change behavior of eutectic Gallium-Indium-Tin. Materialia. 2019;8:100512. https://doi.org/10.1016/j.mtla.2019.100512.

    Article  CAS  Google Scholar 

  20. Zabrocki M, Gąsior W, Dębski A. Thermodynamic properties of Ga-In-Li alloys—a potential material for liquid metal batteries. J Mol Liq. 2021;332: 115765. https://doi.org/10.1016/j.molliq.2021.115765.

    Article  CAS  Google Scholar 

  21. Jendrzejczyk-Handzlik D, Handzlik P. Enthalpies of mixing of liquid Ga-In and Cu-Ga-In alloys. J Mol Liq. 2019;293: 111543. https://doi.org/10.1016/j.molliq.2019.111543.

    Article  CAS  Google Scholar 

  22. Perona-Silhol N, Gambino M, Bros JP, Hoch M. The Cd-Ga-In-Sn-Zn liquid system. Experimental and predicted values of the enthalpy of formation. J Alloy Compd. 1992;189(1):17–22. https://doi.org/10.1016/0925-8388(92)90040-G.

    Article  CAS  Google Scholar 

  23. Ansara I, Gambino M, Bros JP. Étude thermodynamique du système ternaire gallium-indium-antimoine. J Cryst Growth. 1976;32(1):101–10. https://doi.org/10.1016/0022-0248(76)90016-6.

    Article  CAS  Google Scholar 

  24. Rugg BC, Chart TG. A critical assessment of thermodynamic and phase diagram data for the gallium-indium system. Calphad. 1990;14(2):115–23. https://doi.org/10.1016/0364-5916(90)90013-P.

    Article  CAS  Google Scholar 

  25. Kulawik S, Gierlotka W, Dębski A, Gąsior W, Zajączkowski A. Calorimetric and phase diagram studies of the Ga-In-Zn system. J Mol Liq. 2021;325: 115114. https://doi.org/10.1016/j.molliq.2020.115114.

    Article  CAS  Google Scholar 

  26. Gomidželović L, Živković D, Kostov A, Mitovski A, Balanović L. Comparative thermodynamic study of Ga–In–Sb system. J Therm Anal Calorim. 2011;103(3):1105–9. https://doi.org/10.1007/s10973-010-1203-0.

    Article  CAS  Google Scholar 

  27. Meschel SV, Kleppa OJ. The standard enthalpies of formation of some intermetallic compounds of transition metals by high temperature direct synthesis calorimetry. J Alloy Compd. 2006;415(1–2):143–9. https://doi.org/10.1016/j.jallcom.2005.08.006.

    Article  CAS  Google Scholar 

  28. Meschel SV, Kleppa OJ. Thermochemistry of some binary alloys of samarium with the noble metals (Cu, Ag, Au) by high temperature direct synthesis calorimetry. J Alloy Compd. 2006;416(1–2):93–7. https://doi.org/10.1016/j.jallcom.2005.07.069.

    Article  CAS  Google Scholar 

  29. Ferro R, Borzone G, Cacciamani G, Parodi N. Thermodynamics of rare earth alloys: systematics and experimental. Thermochim Acta. 1998;314(1–2):183–204. https://doi.org/10.1016/S0040-6031(98)00266-4.

    Article  CAS  Google Scholar 

  30. Meschel SV, Kleppa OJ. Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table. J Alloy Compd. 2001;321(2):183–200. https://doi.org/10.1016/S0925-8388(01)00966-5.

    Article  CAS  Google Scholar 

  31. Guo Q, Kleppa OJ. The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and co-workers at the University of Chicago—a review. J Alloy Compd. 2001;321(2):169–82. https://doi.org/10.1016/S0925-8388(01)00956-2.

    Article  CAS  Google Scholar 

  32. Colinet C. High temperature calorimetry: recent developments. J Alloy Compd. 1995;220(1–2):76–87. https://doi.org/10.1016/0925-8388(94)06032-0.

    Article  CAS  Google Scholar 

  33. Selhaoui N, Gachon J-C, Hertz J. Enthalpies of formation of some solid hafnium nickel compounds and of the Ni-rich HfNi liquid by direct reaction calorimetry. Metall Trans B. 1992;23(6):815–9. https://doi.org/10.1007/BF02656460.

    Article  Google Scholar 

  34. Borzone G, Borsese A, Ferro R. A contribution to the study of the alloying behaviour of the rare earths with tin. Z Für Anorg Allg Chem. 1983;501(6):199–208. https://doi.org/10.1002/zaac.19835010624.

    Article  CAS  Google Scholar 

  35. Hayun S, Lilova K, Salhov S, Navrotsky A. Enthalpies of formation of high entropy and multicomponent alloys using oxide melt solution calorimetry. Intermetallics. 2020;125: 106897. https://doi.org/10.1016/j.intermet.2020.106897.

    Article  CAS  Google Scholar 

  36. Kleppa OJ. A new high temperature reaction calorimeter: the heats of mixing of liquid lead-tin alloys. J Phys Chem. 1955;59(2):175–81. https://doi.org/10.1021/j150524a020.

    Article  CAS  Google Scholar 

  37. Bros JP. High-temperature calorimetry in metallurgy. J Common Met. 1989;154(1):9–30. https://doi.org/10.1016/0022-5088(89)90166-5.

    Article  CAS  Google Scholar 

  38. Tmar M, Pasturel A, Colinet C. Thermodynamics of (Silicon + Indium) and (Silicon + Gallium) Calorimetric determination of the partial molar enthalpy at infinite dilution of Si in indium and gallium. J Chem Thermodyn. 1983;15(11):1037–40. https://doi.org/10.1016/0021-9614(83)90029-0.

    Article  CAS  Google Scholar 

  39. Abramchuk M, Lilova K, Subramani T, Yoo R, Navrotsky A. Development of high-temperature oxide melt solution calorimetry for p-block element containing materials. J Mater Res. 2020;35(16):2239–46. https://doi.org/10.1557/jmr.2020.185.

    Article  CAS  Google Scholar 

  40. Subramani T, Lilova K, Abramchuk M, Leinenweber KD, Navrotsky A. Greigite (Fe 3 S 4) is thermodynamically stable: implications for its terrestrial and planetary occurrence. Proc Natl Acad Sci. 2020;117(46):28645–8. https://doi.org/10.1073/pnas.2017312117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Majzlan J, Kiefer S, Lilova K, Subramani T, Navrotsky A, Tuhý M, Vymazalová A, Chareev DA, Dachs E, Benisek A. Calorimetric study of skutterudite (CoAs2.92) and heazlewoodite (Ni3S2). Am Miner. 2022;107(12):2219–25. https://doi.org/10.2138/am-2022-8337.

    Article  Google Scholar 

  42. Navrotsky A, Rapp RP, Smelik E, Burnley P, Circone S, Chai L, Bose K. The behavior of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases. Am Miner. 1994;79(11–12):1099–109.

    CAS  Google Scholar 

  43. Navrotsky A. Progress and new directions in calorimetry: a 2014 perspective. J Am Ceram Soc. 2014;97(11):3349–59. https://doi.org/10.1111/jace.13278.

    Article  CAS  Google Scholar 

  44. Navrotsky A. Progress and new directions in high temperature calorimetry. Phys Chem Miner. 1977;2(1):89–104. https://doi.org/10.1007/BF00307526.

    Article  CAS  Google Scholar 

  45. Navrotsky A. Progress and new directions in high temperature calorimetry revisited. Phys Chem Miner. 1997;24(3):222–41. https://doi.org/10.1007/s002690050035.

    Article  CAS  Google Scholar 

  46. Deore S. Oxide melt solution calorimetry of sulfides: enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. Am Miner. 2006;91(2–3):400–3. https://doi.org/10.2138/am.2006.1921.

    Article  CAS  Google Scholar 

  47. Deore S, Xu F, Navrotsky A. Oxide-melt solution calorimetry of selenides: enthalpy of formation of zinc, cadmium, and lead selenide. Am Miner. 2008;93(5–6):779–83. https://doi.org/10.2138/am.2008.2752.

    Article  CAS  Google Scholar 

  48. Brown E. Hematite-ilmenite (Fe2O3-FeTiO3) solid solutions: the effects of cation ordering on the thermodynamics of mixing. Am Miner. 1994;79(5–6):485–96.

    CAS  Google Scholar 

  49. Kattner UR. The Calphad method and its role in material and process development. Tecnol Em Metal Mater E Min. 2016;13(1):3–15. https://doi.org/10.4322/2176-1523.1059.

    Article  CAS  Google Scholar 

  50. Hillert M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad. 1980;4(1):1–12. https://doi.org/10.1016/0364-5916(80)90016-4.

    Article  CAS  Google Scholar 

  51. Miedema AR. Simple model for alloys. 1973;33.

  52. Li C, Yuan Y, Li F, Wei Q, Huang Y. Modification and verification of miedema model for predicating thermodynamic properties of binary precipitates in multi-element alloys. Phys B Condens Matter. 2022;627: 413540. https://doi.org/10.1016/j.physb.2021.413540.

    Article  CAS  Google Scholar 

  53. Ouyang Y, Zhong X, Du Y, Jin Z, He Y, Yuan Z. Formation enthalpies of Fe–Al–RE ternary alloys calculated with a geometric model and Miedema’s theory. J Alloys Compd. 2006;416(1–2):148–54. https://doi.org/10.1016/j.jallcom.2005.08.055.

    Article  CAS  Google Scholar 

  54. Chou K-C. A general solution model for predicting ternary thermodynamic properties. Calphad. 1995;19(3):315–25. https://doi.org/10.1016/0364-5916(95)00029-E.

    Article  CAS  Google Scholar 

  55. Chou K-C, Li W-C, Li F, He M. Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad. 1996;20(4):395–406. https://doi.org/10.1016/S0364-5916(97)00002-3.

    Article  CAS  Google Scholar 

  56. Kattner UR. The need for reliable data in computational thermodynamics. High Temp-High Press. 2020;49:1–2.

  57. Ouyang Y, Zhong X, Du Y, Feng Y, He Y. Enthalpies of formation for the Al–Cu–Ni–Zr quaternary alloys calculated via a combined approach of geometric model and Miedema theory. J Alloys Compd. 2006;420(1–2):175–81. https://doi.org/10.1016/j.jallcom.2005.10.047.

    Article  CAS  Google Scholar 

  58. Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R, Melançon J, Pelton AD, Petersen S. FactSage thermochemical software and databases. Calphad. 2002;26(2):189–228. https://doi.org/10.1016/S0364-5916(02)00035-4.

    Article  CAS  Google Scholar 

  59. Sundman B, Kattner UR, Palumbo M, Fries SG. OpenCalphad-a free thermodynamic software. Integr Mater Manuf Innov. 2015;4(1):1–15. https://doi.org/10.1186/s40192-014-0029-1.

    Article  Google Scholar 

  60. Otis R, Liu Z-K. Pycalphad: CALPHAD-based computational thermodynamics in python. J Open Res Softw. 2017;5(1):1. https://doi.org/10.5334/jors.140.

    Article  Google Scholar 

  61. Andersson J-O, Helander T, Höglund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002;26(2):273–312. https://doi.org/10.1016/S0364-5916(02)00037-8.

    Article  CAS  Google Scholar 

  62. Harvey J-P, Lebreux-Desilets F, Marchand J, Oishi K, Bouarab A-F, Robelin C, Gheribi AE, Pelton AD. On the application of the FactSage thermochemical software and databases in materials science and pyrometallurgy. Processes. 2020;8(9):1156. https://doi.org/10.3390/pr8091156.

    Article  CAS  Google Scholar 

  63. van de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad. 2002;26(4):539–53. https://doi.org/10.1016/S0364-5916(02)80006-2.

    Article  Google Scholar 

  64. Liu ZK, Chen LQ. Integration of first-principles calculations, Calphad modeling, and phase-field simulations. In: Bozzolo G, Noebe RD, Abel PB, Vij DR, editors. Applied computational materials modeling. US: Boston, MA: Springer; 2007. p 171–213. https://doi.org/10.1007/978-0-387-34565-9_6.

  65. Yu D, Xue Z, Mu T. Eutectics: formation, properties, and applications. Chem Soc Rev. 2021;50(15):8596–638. https://doi.org/10.1039/D1CS00404B.

    Article  CAS  PubMed  Google Scholar 

  66. Okamoto H. Ga-Pt (Gallium-Platinum). J Phase Equilibria Diffus. 2007;28(5):494–494. https://doi.org/10.1007/s11669-007-9149-z.

    Article  CAS  Google Scholar 

  67. Zivkovic D, Manasijevic D, Zivkovic Z. Thermodynamic study of Ga-Sn and Ga-Zn systems using quantitative differential thermal analysis. J Therm Anal Calorim. 2003;74(1):85–96. https://doi.org/10.1023/A:1026373602352.

    Article  CAS  Google Scholar 

  68. Subramani T, Lilova K, Householder M, Yang S, Lyons J, Navrotsky A. Surface energetics of wurtzite and sphalerite polymorphs of zinc sulfide and implications for their formation in nature. Geochim Cosmochim Acta. 2023;340:99–107. https://doi.org/10.1016/j.gca.2022.11.003.

    Article  CAS  Google Scholar 

  69. Barin I. Thermochemical data of pure substances. 1st ed. Wiley; 1995. https://doi.org/10.1002/9783527619825.

  70. Maniani ME, Sabbar A. Partial and integral enthalpies of mixing in the liquid Ag–In–Sn–Zn quaternary alloys. Thermochim Acta. 2014;592:1–9. https://doi.org/10.1016/j.tca.2014.07.028.

    Article  CAS  Google Scholar 

  71. Harvey J-P, Gheribi ÄE, Rincent A, Jofré J, Lafaye P. On the elaboration of the next generation of thermodynamic models of solid solutions. Phys Chem Chem Phys. 2020;22(35):19999–20013. https://doi.org/10.1039/D0CP02642E.

    Article  PubMed  Google Scholar 

  72. Bara JE, Camper DE, Gin DL, Noble RD. Room-temperature ionic liquids and composite materials: platform technologies for CO 2 capture. Acc Chem Res. 2010;43(1):152–9. https://doi.org/10.1021/ar9001747.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science, and Engineering Division, grant DE-SC0021987. We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University.

Author information

Authors and Affiliations

Authors

Contributions

M. Bustamante: Conceptualization, methodology development, performance of all experiments, writing of original draft, review, and editing. K. Lilova: Conceptualization, assistance with experiments, writing of original draft, review, and editing. A. Navrotsky: Conceptualization, writing of the original draft, review, and editing. J.-P. Harvey: FactSage calculations, review, and editing. O. Kentaro: FactSage calculations and review.

Corresponding author

Correspondence to Alexandra Navrotsky.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, M., Lilova, K., Navrotsky, A. et al. Enthalpies of mixing for alloys liquid below room temperature determined by oxidative solution calorimetry. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13035-5

Keywords

Navigation