Skip to main content
Log in

Structure Transformations and Supercooling in Nanostructured Gallium Alloys

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The effect of size reduction on the phase diagrams of metallic alloys is of great importance for modern applications. Gallium-based alloys are considered as prospective nanomaterials for soft robotics and wearable electronics. Here, we present NMR studies of the Ga–In–Sn eutectic alloy confined to a porous glass with pore size 18 nm, which demonstrated the liquid–liquid phase transition in the supercooled state of the alloy. The phase transition was detected upon cooling by emergence of a second component of the 71Ga NMR line with higher Knight shift. This additional component survived at lower temperatures and was observed upon successive warming. 115In NMR measurements were also conducted to monitor the alloy composition at freezing and melting. The critical point was evidenced. The splitting of the 71Ga NMR line was not found in a binary Ga–Sn alloy embedded into porous glass and opal templates, which suggests that liquid–liquid phase transition is sensitive to the alloy composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.H. Poole, T. Grande, C.A. Angell, P.F. McMillan, Science 275, 322 (1997)

    Article  Google Scholar 

  2. K. Ito, C.T. Moynihan, C.A. Angell, Nature 398, 492 (1999)

    Article  ADS  Google Scholar 

  3. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Proc. Natl. Acad. Sci. U. S. A. 104, 18387 (2007)

    Article  ADS  Google Scholar 

  4. O. Mishima, H.E. Stanley, Nature 396, 329 (1998)

    Article  ADS  Google Scholar 

  5. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, O. Shimomura, Science 306, 848 (2004)

    Article  ADS  Google Scholar 

  6. I. Saika-Voivod, P.H. Poole, F. Sciortino, Nature 412, 514 (2001)

    Article  ADS  Google Scholar 

  7. G.N. Greaves, M.C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, Q.V. Van, O. Majerus, C.J. Benmore, R. Weber, C.M. Martin, L. Hennet, Science 322, 566 (2008)

    Article  ADS  Google Scholar 

  8. A. Cadien, Q.Y. Hu, Y. Meng, Y.Q. Cheng, M.W. Chen, J.F. Shu, H.K. Mao, H.W. Sheng, Phys. Rev. Lett. 110, 125503 (2013)

    Article  ADS  Google Scholar 

  9. P. Debenedetti, S.A. Rice, A.R. Dinner, Liquid Polymorphism (Wiley, Hoboken, 2013)

    Google Scholar 

  10. H.K. Christenson, J. Phys.: Condens. Matter 13, R95 (2001)

    ADS  Google Scholar 

  11. C. Tien, E.V. Charnaya, W. Wang, Y.A. Kumzerov, D. Michel, Phys. Rev. B 74, 024116 (2006)

    Article  ADS  Google Scholar 

  12. D.Y. Nefedov, D.Y. Podorozhkin, E.V. Charnaya, A.V. Uskov, J. Haase, Y.A. Kumzerov, A.V. Fokin, J. Phys.: Condens. Matter 31, 255101 (2019)

    ADS  Google Scholar 

  13. DYu. Nefedov, E.V. Charnaya, A.V. Uskov, DYu. Podorozhkin, A.O. Antonenko, J. Haase, Yu.A. Kumzerov, Phys. solid state 60, 2640 (2018)

    Article  ADS  Google Scholar 

  14. E.V. Charnaya, M.K. Lee, C. Tien, L.J. Chang, Z.-J. Wu, Y.A. Kumzerov, A.S. Bugaev, Phys. Rev. B 8, 155401 (2013)

    Article  ADS  Google Scholar 

  15. A.V. Uskov, D.Y. Nefedov, E.V. Charnaya, J. Haase, D. Michel, Y.A. Kumzerov, A.V. Fokin, A.S. Bugaev, Nano. Lett. 16, 791 (2016)

    Article  ADS  Google Scholar 

  16. D.Y. Podorozhkin, E.V. Charnaya, M.K. Lee, L.J. Chang, J. Haase, D. Michel, Y.A. Kumzerov, A.V. Fokin, Ann. Phys. 527, 248 (2015)

    Article  Google Scholar 

  17. Z. Li, Y. Guo, Y. Zong, K. Li, S. Wang, H. Cao, C. Teng, Nanomaterials 11, 2246 (2021)

    Article  Google Scholar 

  18. G. Bo, L. Ren, X. Xu, Y. Du, S. Dou, Adv Phys: X 3, 1446359 (2018)

    Google Scholar 

  19. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic, J. Chem. Eng. Data 59, 757 (2014)

    Article  Google Scholar 

  20. T.J. Anderson, I. Ansara, J. Phase Equilibria 13, 181 (1992)

    Article  Google Scholar 

  21. D.A.C. Jara, M.F. Michelon, A. Antonelli, M. de Koning, J. Chem. Phys. 130, 221101 (2009)

    Article  ADS  Google Scholar 

  22. R. Li, G. Sun, L. Xu, J. Chem. Phys. 145, 054506 (2016)

    Article  ADS  Google Scholar 

  23. J. Winter, Magnetic resonance in metals (Oxford University Press, Oxford, 1970)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Russian Science Foundation, grant 21-72-20038. Measurements were carried out using the equipment of the Research Park of St. Petersburg State University.

Funding

The studies were financially supported by the Russian Science Foundation, grant 21-72-20038.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DYP, EVC, YAK. Methodology: AAV, DYP, EVC. Formal analysis and investigation: AAV, DYP, DYN, VMM, AVF. Writing—original draft preparation: AAV, DYP. Writing—review and editing: EVC. Funding acquisition: YAK. Resources: VMM, AVF. Supervision: EVC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. A. Vasilev.

Ethics declarations

Conflict of Interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilev, A.A., Podorozhkin, D.Y., Nefedov, D.Y. et al. Structure Transformations and Supercooling in Nanostructured Gallium Alloys. Appl Magn Reson 53, 1649–1659 (2022). https://doi.org/10.1007/s00723-022-01490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01490-y

Navigation