Skip to main content
Log in

Thermal analysis of hybrid nanofluids inside a microchannel heat exchanger for electronic cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we address the morphology of nanoparticles in a base fluid as a variable to see how different shapes can be used to control thermal conductivity along with the types of nanoparticles. Hybrid and mono particle suspensions, including TiO2, Al2O3, and hybrid TiO2–Al2O3, have been used. Water and ethylene glycol are used as base fluids, and nanoparticles range from 0 to 4% in a volume fraction. The Nusselt number, average heat transfer, thermal resistance, pressure drop, and pumping power as a function of Reynolds number are studied for different nanofluids in microchannels. Overall performance is characterized by the analysis of pressure drop, pumping power, thermal resistance, and maximum power. Simulation results show that the thermal conductivity increases linearly with particle morphology. By adding 4% of HyNF (50% Al2O3-50% TiO2) with a morphology of n1 = 7 and n2 = 3, respectively, it results in a substantial 18.6% enhancement in thermal conductivity, compared to 12% and 10.04% enhancement for mono-nanofluids with Al2O3 and TiO2 nanoparticles, respectively. The type of base liquid has a negligible effect on the thermal conductivity of the same kind of nanoparticles. Nevertheless, the findings of this study provide valuable guidance for cooling microelectronic cooling components via nanofluid-based thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure. 2
Figure. 3
Figure. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A bm :

Bottom area of microchannel heat sink (m2)

A c :

Front view area of microchannel (m2)

A sf :

Surface area available for heat transfer (m2)

L :

Channel length (m)

H :

Channel height (m)

H c :

Bottom plate thickness (m)

W c :

Channel width (m)

W w :

Channel wall thickness (m)

D h :

Hydraulic diameter of the fluid flow (m)

n :

Number of cooling channels

k nf :

Thermal conductivity of nanofluid (Wm1K1)

k f :

Thermal conductivity of fluid (Wm1K1)

k s :

Thermal conductivity of sink material (Wm1K1)

cp:

Specific heat (Jkg1K1)

h :

Heat transfer coefficient (Wm2K1)

Pr:

Prandtl number

Nu:

Nusselt number

Re:

Reynold number

U m :

Inlet velocity (ms1)

m o :

Total mass flow rate (kg s1)

V o :

Total volume flow rate (m3s1)

R th :

Thermal resistance (KW1)

Q :

Heat generation (W)

q :

Heat flux (Wcm2)

T :

Temperature difference

T max :

Maximum temperature (K)

T min :

Minimum temperature (K)

T bulk :

Bulk temperature of fluid (K)

p :

Pressure drops inside channel (kPa)

f :

Friction factor

P p :

Pumping power

ρ :

Density (kgm3)

µ :

Dynamic viscosity (kgm1s1)

η :

Fin efficiency

υ :

Kinematic viscosity (m2s1)

φ :

Particle volume fraction

ß :

Hybrid particle volume fraction.

n :

Shape factor of nano particles

ψ :

Sphericity of suspensions particles

bm:

Bottom

c :

Channel

f :

Fluid

in:

Inlet

s :

Solid

sf:

Surface available for heat transfer

NF:

Nanofluid

CPU:

Central processing units

HyNF:

Hybrid nanofluid

MoNF:

Mono nanofluid

MWCNT:

Multi-wall carbon nanotubes

References

  1. Abdelsalam SI, Bhatti M. Unraveling the nature of nano-diamonds and silica in a catheterized tapered artery: highlights into hydrophilic traits. Sci Rep. 2023;13(1):5684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhatti MM, Vafai K, Abdelsalam SI. The role of nanofluids in renewable energy engineering. MDPI; p. 2671 2023.

  3. Abdelsalam S, Zaher A. Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime—a physiological approach. Appl Math Mech. 2023;44(9):1563–76.

    Article  Google Scholar 

  4. Abdelsalam SI, Magesh A, Tamizharasi P, Zaher A. Versatile response of a Sutterby nanofluid under activation energy: hyperthermia therapy. Int J Numer Methods Heat Fluid Flow 2023.

  5. Krishnan S, Garimella SV, Chrysler GM, Mahajan RV. Towards a thermal Moore’s law. IEEE Trans Adv Packag. 2007;30(3):462–74.

    Article  Google Scholar 

  6. Alhusseny A, Al-Fatlawi A, Al-Aabidy Q, Nasser A, Al-Zurfi N. Dissipating the heat generated in high-performance electronics using graphitic foam heat-sinks cooled with a dielectric liquid. Int Commun Heat Mass Transfer. 2021;127: 105478.

    Article  Google Scholar 

  7. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.

    Article  Google Scholar 

  8. Dixit T, Ghosh I. Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids. Renew Sustain Energy Rev. 2015;41:1298–311.

    Article  Google Scholar 

  9. Feng Z, Luo X, Guo F, Li H, Zhang J. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl Therm Eng. 2017;116:597–609.

    Article  Google Scholar 

  10. Singh R, Akbarzadeh A, Mochizuki M, Nguyen T, Nguyen T. Thermal characterization of copper microchannel heat sink for power electronics cooling. J Thermophys Heat Transfer. 2009;23(2):371–80.

    Article  CAS  Google Scholar 

  11. Kwon B, Maniscalco NI, Jacobi AM, King WP. High power density two-phase cooling in microchannel heat exchangers. Appl Therm Eng. 2019;148:1271–7.

    Article  CAS  Google Scholar 

  12. Antohe B, Lage J, Price D. Numerical characterization of micro heat exchangers using experimentally tested porous aluminum layers. Int J Heat Fluid Flow. 1996;17(6):594–603.

    Article  CAS  Google Scholar 

  13. Kumaraguruparan G, Sornakumar T. Development and testing of aluminum micro channel heat sink. J Therm Sci. 2010;19:245–52.

    Article  CAS  Google Scholar 

  14. Silvério V, Cardoso S, Gaspar J, Freitas PP, Moreira A. Design, fabrication and test of an integrated multi-microchannel heat sink for electronics cooling. Sens Actuators, A. 2015;235:14–27.

    Article  Google Scholar 

  15. Yao Z, Derikvand M, Solari MS, Zhang J, Altalbawy FMA, Al-Khafaji AHD, et al. Numerical assessment of the impacts of non-Newtonian nanofluid and hydrophobic surfaces on conjugate heat transfer and irreversibility in a silicon microchannel heat-sink. J Taiwan Inst Chem Eng. 2023;142: 104642.

    Article  CAS  Google Scholar 

  16. Rao X, Jin C, Zhang H, Song J, Xiao C. A hybrid microchannel heat sink with ultra-low pressure drop for hotspot thermal management. Int J Heat Mass Transf. 2023;211: 124201.

    Article  CAS  Google Scholar 

  17. Ansari D, Jeong JH. A silicon-diamond microchannel heat sink for die-level hotspot thermal management. Appl Therm Eng. 2021;194: 117131.

    Article  CAS  Google Scholar 

  18. Kang S-W, Chen Y-T, Chang G-S. The manufacture and test of (110) orientated silicon based micro heat exchanger. J Appl Sci Eng. 2002;5(3):129–36.

    Google Scholar 

  19. Roberts NS, Al-Shannaq R, Kurdi J, Al-Muhtaseb SA, Farid MM. Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Appl Therm Eng. 2017;122:11–8.

    Article  CAS  Google Scholar 

  20. Ong YS, KuShaari K. CFD investigation of the feasibility of polymer-based microchannel heat sink as thermal solution. Chin J Chem Eng. 2020;28(4):980–94.

    Article  CAS  Google Scholar 

  21. Zhu Q, Xia H, Chen J, Zhang X, Chang K, Zhang H, et al. Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes. Int J Therm Sci. 2021;161: 106721.

    Article  Google Scholar 

  22. Kose HA, Yildizeli A, Cadirci S. Parametric study and optimization of microchannel heat sinks with various shapes. Appl Therm Eng. 2022;211: 118368.

    Article  Google Scholar 

  23. Togun H, Hamidatou S, Mohammed HI, Abed AM, Hasan HA, Homod RZ, et al. Numerical simulation on heat transfer augmentation by using innovative hybrid ribs in a forward-facing contracting channel. Symmetry. 2023;15(3):690.

    Article  CAS  Google Scholar 

  24. Sadique H, Murtaza Q. Heat transfer augmentation in microchannel heat sink using secondary flows: a review. Int J Heat Mass Transfer. 2022;194:123063.

    Article  Google Scholar 

  25. Gao J, Hu Z, Yang Q, Liang X, Wu H. Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress. Thermal Sci Eng Progr. 2022;29: 101203.

    Article  CAS  Google Scholar 

  26. Bhandari P, Rawat KS, Prajapati YK, Padalia D, Ranakoti L, Singh T. Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review. J Energy Storage. 2023;66: 107548.

    Article  Google Scholar 

  27. Muneeshwaran M, Srinivasan G, Muthukumar P, Wang C-C. Role of hybrid-nanofluid in heat transfer enhancement–a review. Int Commun Heat Mass Transfer. 2021;125: 105341.

    Article  CAS  Google Scholar 

  28. Nabil M, Azmi W, Hamid K, Zawawi N, Priyandoko G, Mamat R. Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int Commun Heat Mass Transfer. 2017;83:30–9.

    Article  CAS  Google Scholar 

  29. Yasir M, Khan M, Alqahtani AS, Malik MY. Numerical study of axisymmetric hybrid nanofluid MgO-Ag/H2O flow with non-uniform heat source/sink. Alex Eng J. 2023;75:439–46.

    Article  Google Scholar 

  30. Sriharan G, Harikrishnan S, Oztop HF. A review on thermophysical properties, preparation, and heat transfer enhancement of conventional and hybrid nanofluids utilized in micro and mini channel heat sink. Sustain Energy Technol Assess. 2023;58: 103327.

    Google Scholar 

  31. Sepehrnia M, Mohammadzadeh K, Rozbahani MH, Ghiasi MJ, Amani M. Experimental study, prediction modeling, sensitivity analysis, and optimization of rheological behavior and dynamic viscosity of 5W30 engine oil based SiO2/MWCNT hybrid nanofluid. Ain Shams Eng J. 2024;15(1):102257.

    Article  Google Scholar 

  32. Kumar L, Walvekar R, Khalid M. An overview of recent advancements and applications of hybrid nanofluids. Mater Today: Proc. 2023.

  33. Abdullatif Alshuhail L, Shaik F, Syam SL. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications–a review. Alex Eng J. 2023;68:365–404.

    Article  Google Scholar 

  34. Nimmagadda R, Venkatasubbaiah K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+ Ag/Water). Eur J Mech-B/Fluids. 2015;52:19–27.

    Article  Google Scholar 

  35. Kumar V, Sarkar J. Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance. Appl Therm Eng. 2020;165: 114546.

    Article  CAS  Google Scholar 

  36. Selvakumar P, Suresh S. Use of Al2O3–Cu/water hybrid nanofluid in an electronic heat sink. IEEE Trans Compt Packag Manuf Technol. 2012;2(10):1600–7.

    Article  CAS  Google Scholar 

  37. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97.

    Article  CAS  Google Scholar 

  38. Nimmagadda R, Venkatasubbaiah K. Two-phase analysis on the conjugate heat transfer performance of microchannel with Cu, Al, SWCNT, and hybrid nanofluids. J Thermal Sci Eng Appl. 2017;9(4): 041011.

    Article  Google Scholar 

  39. Nimmagadda R, Venkatasubbaiah K. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers. Heat Mass Transf. 2017;53(6):2099–115.

    Article  CAS  Google Scholar 

  40. Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys. 2002;23(2):571–80.

    Article  CAS  Google Scholar 

  41. Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.

    Article  CAS  Google Scholar 

  42. Drew DA, Passman SL. Theory of multicomponent fluids. Springer Sci Bus Media; 2006.

  43. Chu Y-M, Farooq U, Mishra NK, Ahmad Z, Zulfiqar F, Yasmin S, et al. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: applications in nano-energy thermal devices. Case Stud Thermal Eng. 2023;44: 102818.

    Article  Google Scholar 

  44. Sundar LS, Ramana EV, Graça M, Singh MK, Sousa AC. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transfer. 2016;73:62–74.

    Article  CAS  Google Scholar 

  45. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  46. Devi SU, Devi SA. Heat transfer enhancement of Cu− Al2O3/water hybrid nanofluid flow over a stretching sheet. J Nigerian Math Soc. 2017;36(2):419–33.

    Google Scholar 

  47. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571

  48. Ho C, Huang J, Tsai P, Yang Y. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transfer. 2010;37(5):490–4.

    Article  CAS  Google Scholar 

  49. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1873.

    Google Scholar 

  50. Ijam A, Saidur R, Ganesan P. Cooling of minichannel heat sink using nanofluids. Int Commun Heat Mass Transfer. 2012;39(8):1188–94.

    Article  CAS  Google Scholar 

  51. Ijam A, Saidur R. Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl Therm Eng. 2012;32:76–82.

    Article  CAS  Google Scholar 

  52. Wohld J, Beck J, Inman K, Palmer M, Cummings M, Fulmer R, et al. Hybrid nanofluid thermal conductivity and optimization: original approach and background. Nanomaterials. 2022;12(16):2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Devi SA, Devi SSU. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int J Nonlin Sci Numer Simulat. 2016;17(5):249–57.

    Article  CAS  Google Scholar 

  54. White FM, Majdalani J. Viscous fluid flow. McGraw-Hill New York; 2006.

  55. Bergman TL, Incropera FP, Lavine AS, DeWitt DP. Fundamentals of heat and mass transfer. 7th ed. Wiley; April 2011.

  56. Kays WM, Crawford ME, Weigand B. Convective heat and mass transfer. McGraw-Hill New York; 1980.

  57. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  58. Xie X, Liu Z, He Y, Tao W. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Appl Therm Eng. 2009;29(1):64–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Wadi Al-Fatlawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Fatlawi, A.W., Niazmand, H. Thermal analysis of hybrid nanofluids inside a microchannel heat exchanger for electronic cooling. J Therm Anal Calorim 149, 4119–4131 (2024). https://doi.org/10.1007/s10973-024-12991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12991-2

Keywords

Navigation