Skip to main content
Log in

Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with \(d_p\) = 50 nm), (2 vol% SWCNT and 3 vol% Au with \(d_p\) = 70 nm), (3 vol% Al2O3 and 2 vol% Au with \(d_p\) = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with \(d_p\) = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Surface area of the particle (m\(^2\))

\(C_p\) :

Specific heat (J/kg K)

d :

Nanoparticle diameter (nm)

\(D_h\) :

Hydraulic diameter (m)

\(k_s\) :

Thermal conductivity of solid (W/m K)

\(k_f\) :

Thermal conductivity of fluid (W/m K)

\(K_B\) :

Boltzmann constant (J/K)

Nu :

Nusselt number

\(q_0\) :

Heat flux (W/m\(^2\))

Re :

Reynolds number

T :

Dimensional temperature (K)

\(\overrightarrow{U}\) :

Dimensional velocity vector (m/s)

U :

Dimensional axial velocity (m/s)

\(V_p\) :

Volume of the particle (m\(^3\))

\(\rho \) :

Density (kg /m\(^3\))

\(\mu \) :

Dynamic viscosity (kg/m s)

\(\phi \) :

Volume concentration

avg :

Average

bf :

Basefluid

c :

Continuous phase

f :

Fluid

m :

Mixture

nf :

Nanofluid

p :

Particle

\(*\) :

Non-dimensional or dimensionless quantity

References

  1. Tuckerman DB, Pease RFW (1981) High performance heat sinking for VLSI. IEEE Electron Device Lett 2(5):126–129

    Article  Google Scholar 

  2. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11(5):797–817

    Article  Google Scholar 

  3. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    Article  Google Scholar 

  4. Zhang X, Hua G, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31(6):593–599

    Article  Google Scholar 

  5. Selvam C, Muhammed Irshad EC, Mohan Lal D, Harish S (2016) Convective heat transfer characteristics of waterethylene glycol mixture with silver nanoparticles. Exp Therm Fluid Sci 77:188–196

    Article  Google Scholar 

  6. Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371

    Article  Google Scholar 

  7. Xie H, Chen L (2009) Adjustable thermal conductivity in carbon nanotube nanofluids. Phys Lett A 373:1861–1864

    Article  Google Scholar 

  8. Estell P, Halelfadl S, Mar T (2015) Thermal conductivity of CNT water based nanofluids: experimental trends and models overview. J Therm Eng 1(2):381–390

    Article  Google Scholar 

  9. Duangthongsuk W, Wongwises S (2015) A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations. Exp Therm Fluid Sci 69:111–118

    Article  Google Scholar 

  10. Xuan Y, Li Q (2004) Flow and heat transfer performances of nanofluids inside small hydraulic diameter flat tube. J Eng Thermophys 25(2):305–307

    Google Scholar 

  11. Tie P, Li Q, Xuan Y (2014) Heat transfer performance of Cu-water nanofluids in the jet arrays impingement cooling system. Int J Therm Sci 77:199–205

    Article  Google Scholar 

  12. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1):240–250

    Article  Google Scholar 

  13. Halelfadl S, Mare T, Estelle P (2014) Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci 53:104–110

    Article  Google Scholar 

  14. Hasan MI, Rageb AMA, Yaghoubi M (2012) Investigation of a counter flow microchannel heat exchanger performance with using nanofluid as a coolant. J Electron Cool Therm Control 2(3):35–43

    Article  Google Scholar 

  15. Nimmagadda R, Venkatasubbaiah K (2015) Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur J Mech B/Fluids 52:19–27

    Article  MathSciNet  Google Scholar 

  16. Yang YT, Lai FH (2011) Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a micro-channel using the lattice Boltzmann method. Int Commun Heat Mass Transf 38(5):607–614

    Article  Google Scholar 

  17. Tamayol A, Gunda NSK, Akbari M, Mitra SK, Bahrami M (2012) Creeping flow through microchannels with integrated micro-pillars. In: ASME 10th international conference on nanochannels microchannels and minichannels Rio Grande, Puerto Rico, pp 1–7

  18. Xia Z, Mei R, Sheplak M, Hugh Fan Z (2009) Electroosmotically driven creeping flows in a wavy microchannel. Microfluid Nanofluid 6:37–52

    Article  Google Scholar 

  19. Singh PK, Harikrishna PV, Sundararajan T, Das SK (2012) Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels. Exp Therm Fluid Sci 42:174–186

    Article  Google Scholar 

  20. Singh PK, Harikrishna PV, Sundararajan T, Das SK (2011) Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel. J Heat Transf 133(12):121701

    Article  Google Scholar 

  21. Nuim Labib M, Nine MJ, Afrianto H, Chung H, Jeong H (2013) Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer. Int J Therm Sci 71:163–171

    Article  Google Scholar 

  22. Hetsroni G, Gurevich M, Mosyak A, Rozenblit R (2004) Drag reduction and heat transfer of surfactants flowing in a capillary tube. Int J Heat Mass Transf 47(18):3797–3809

    Article  Google Scholar 

  23. Ahmed M, Eslamian M (2015) Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl Therm Eng 78:326–338

    Article  Google Scholar 

  24. Kandlikar S, Garimella S, Li D, Colin S, King MR (2014) Heat transfer and fluid flow in minichannels and microchannels, 2nd edn. Elsevier, Waltham

    Google Scholar 

  25. Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int J Heat Mass Transf 48(25):5580–5601

    Article  Google Scholar 

  26. Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Fluid flow in micro-channels. Int J Heat Mass Transf 48(10):1982–1998

    Article  Google Scholar 

  27. Lelea D, Nishio S, Takano K (2004) The experimental research on micro-tube heat transfer and fluid flow of distilled water. Int J Heat Mass Transf 47(12):2817–2830

    Article  Google Scholar 

  28. Sharp KV, Adrian RJ (2004) Transition from laminar to turbulent flow in liquid filled microtubes. Exp Fluids 36(5):741–747

    Article  Google Scholar 

  29. Xu B, Ooi KT, Wong NT, Choi WK (2000) Experimental investigation of flow friction for liquid flow in microchannels. Int Commun Heat Transf 27(8):1165–1176

    Article  Google Scholar 

  30. Peng XF, Peterson GP (1996) Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf 39(12):2599–2608

    Article  Google Scholar 

  31. Behzadmehr A, Saffar Avval M, Galanis N (2007) Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow 28(2):211–219

    Article  Google Scholar 

  32. Sarhan Musa M (2015) Nanoscale flow: advances, modeling, and applications. Taylor & Francis, Boca Raton

    Google Scholar 

  33. Manninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. VTT Publications, Finland

    Google Scholar 

  34. Schiller L, Naumann A (1935) A drag coefficient correlation. Z Ver Deutsch Ing 77:318–320

    Google Scholar 

  35. Cheng L, Armfield S (1995) A simplified marker and cell method for unsteady flows on non-staggered grids. Int J Numer Methods Fluids 21(1):15–34

    Article  MATH  Google Scholar 

  36. Harish R, Venkatasubbaiah K (2014) Numerical investigation of instability patterns and nonlinear buoyant exchange flow between enclosures by variable density approach. Comput Fluids 96(1):276–287

    Article  MathSciNet  Google Scholar 

  37. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532

    Article  MATH  Google Scholar 

  38. Bo Y, Tao W-Q, Wei J-J (2002) Discussion on momentum interpolation method for collocated grids of incompressible flow. Numer Heat Transf Part B 42(2):141–166

    Article  Google Scholar 

  39. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170

    Article  Google Scholar 

  40. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19):3701–3707

    Article  MATH  Google Scholar 

  41. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571

    Article  Google Scholar 

  42. Minkowycz WJ, Sparrow EM, Abraham JP (2013) Advances in numerical heat transfer: nanoparticle heat transfer and fluid flow. Taylor & Francis, Boca Raton

    Google Scholar 

  43. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK (2005) A micro-convection model for thermal conductivity of nanofluids. Pramana J Phys 65(5):863–869

    Article  Google Scholar 

  44. Herwig H (2002) Flow and heat transfer in micro-systems: is everything different or just smaller. J Appl Math Mech 82(9):579–586

    MathSciNet  MATH  Google Scholar 

  45. Herwig H, Hausner O (2003) Critical view on new results in micro-fluid mechanics: an example. Int J Heat Mass Transf 46(5):935–937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkatasubbaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmagadda, R., Venkatasubbaiah, K. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers. Heat Mass Transfer 53, 2099–2115 (2017). https://doi.org/10.1007/s00231-017-1970-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-1970-2

Keywords

Navigation