Skip to main content
Log in

Effect of twist ratio on the thermal-hydraulic behavior of an aluminum oxide/cupric oxide nanofluid heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hybrid nanofluids contain two or more nanoparticles mixed with a conventional coolant to enhance the thermophysical properties at the molecular level. The current research investigates the performance of heat exchangers under the influence of hybrid nanofluids. Simulation is performed using Ansys 2020 R2 and RNG k-ϵ model is used to solve the problem because it is the most accurate model suggested for turbulent flow. A single-pass heat exchanger of length 650 mm and diameter 20 mm was investigated and inserted with twisted tapes of twist ratios(y/W) 4 and 3 for volume concentrations ranging from 0.5 to 3%. A hybrid metal matrix nanofluid, a mixture of Al2O3 and CuO in a ratio of 70:30, was used as a working fluid to conduct the study. It is astonishing to find that with the increase in volume concentrations of hybrid nanofluid, there is a significant increase in Nusselt number, which is 370% for twisted tape of twist ratio 3. The study also revealed that there is minimal effect of volume concentration on the friction factor, although inserting twisted tape increases the friction factor 294% more than the plain tube. The thermal performance factor of the heat exchanger with twisted tape of Twist ratio = 3 is 3.52 times more than that of a plain tube. An empirical correlation between the Nusselt number and the friction factor is established for various volume concentrations and twist ratios. We conclude that the use of a hybrid nanofluid with higher thermophysical characteristics is beneficial for obtaining a high thermal performance system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

EG:

Ethylene glycol

Re:

Reynolds number

Nu:

Nusselt number

f :

Friction factor

CNT:

Carbon nano tube

RNG:

Re-normalization group

THP:

Thermo-hydraulic performance

CFD:

Computational fluid dynamics

TT:

Twist tape

y :

Pitch of twist tape (mm)

w :

Width of twist tape (mm)

T :

Temperature (K)

SIMPLE:

Semi-implicit method for pressure linked equations

p :

Pressure (pa)

ρ :

Density (kg m–3)

Pr:

Prandtl number

μ:

Dynamic viscosity (kg ms–1)

c p :

Specific heat (J kg−1 K−1)

h :

Convective heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

m :

Mass flow rate (kg s−1)

Q :

Convective heat energy (W)

A :

Cross section Area heat exchanger tube (mm)

D :

Diameter of tube (mm)

L :

Length of tube (mm)

TR:

Twist ratio

CHT:

Convective heat transfer

∅:

Volume concentration

np:

Nanoparticle

hnp:

Hybrid nanoparticle

hnf:

Hybrid nanofluid

nf:

Nano fluid

bf:

Base fluid

eff:

Effectiveness

i:

Inlet

o:

Outlet

0:

Plain tube/tube without insertion of twist tape

References

  1. Mahian O, et al. Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy. 2021. https://doi.org/10.1016/j.nanoen.2021.106069.

    Article  Google Scholar 

  2. Hu G, et al. Potential evaluation of hybrid nanofluids for solar thermal energy harvesting: a review of recent advances. Sustain Energy Technol Assess. 2021;48:101651. https://doi.org/10.1016/j.seta.2021.101651.

    Article  Google Scholar 

  3. Dagdevir T, Ozceyhan V. An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts. Int J Therm Sci. 2021;159: 106564. https://doi.org/10.1016/j.ijthermalsci.2020.106564.

    Article  CAS  Google Scholar 

  4. Afsharpanah F, et al. Numerical investigation of non-uniform heat transfer enhancement in parabolic trough solar collectors using dual modified twisted-tape inserts. J Thermal Eng. 2021;71:133–47. https://doi.org/10.1818/thermal.846584.

    Article  Google Scholar 

  5. Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53.7-8:1409–16. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016.

    Article  CAS  Google Scholar 

  6. Subramanian R, Senthil Kumar A, Vinayagar K, Muthusamy C. Experimental analyzes on heat transfer performance of TiO 2–water nanofluid in double-pipe counter-flow heat exchanger for various flow regimes. J Therm Anal Calorim. 2020;140:603–12. https://doi.org/10.1007/s10973-019-08887-1.

    Article  CAS  Google Scholar 

  7. Wongcharee K, Eiamsa-Ard S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transfer. 2011;38(6):742–8. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.011.

    Article  CAS  Google Scholar 

  8. He W, et al. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int Commun Heat Mass Transf. 2020;110:1044. https://doi.org/10.1016/j.icheatmasstransfer.2019.104440.

    Article  CAS  Google Scholar 

  9. Ahmadi K, et al. Heat transfer assessment of turbulent nanofluid flow in a circular pipe fitted with elliptical-cut twisted tape inserts. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10338-1.

    Article  Google Scholar 

  10. Kumar B, et al. Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: an experimental study. Exp Heat Transf. 2019;326:524–44. https://doi.org/10.1080/08916152.2018.1545808.

    Article  CAS  Google Scholar 

  11. Nakhchi ME, AbolfazliEsfahani J. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94. https://doi.org/10.1016/j.powtec.2018.08.087.

    Article  CAS  Google Scholar 

  12. Kumar R, et al. Modeling of triangular perforated twisted tape with V-Cuts in double pipe heat exchanger. Mater Today Proc. 2021;46:5389–95. https://doi.org/10.1016/j.matpr.2020.09.038.

    Article  Google Scholar 

  13. Fattahi A. Numerical simulation of a solar collector equipped with a twisted tape and containing a hybrid nanofluid. Sust Energy Technol Assess. 2021;45: 101200. https://doi.org/10.1016/j.seta.2021.101200.

    Article  Google Scholar 

  14. Gnanavel C, Saravanan R, Chandrasekaran M. Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger. Mater Today Proc. 2020;21:865–9. https://doi.org/10.1016/j.matpr.2019.07.606.

    Article  CAS  Google Scholar 

  15. Huang W, Marefati M. Energy, exergy, environmental and economic comparison of various solar thermal systems using water and Thermia Oil B base fluids, and CuO and Al2O3 nanofluids. Energy Rep. 2020;6:2919–47. https://doi.org/10.1016/j.egyr.2020.10.021.

    Article  Google Scholar 

  16. Olabi AG, et al. Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. Int J Thermofluids. 2021. https://doi.org/10.1016/j.ijft.2021.100072.

    Article  Google Scholar 

  17. Ju Y, et al. Evaluation of multiple semi-twisted tape inserts in a heat exchanger pipe using Al2O3 nanofluid. Nanomaterials. 2021;116:1570. https://doi.org/10.3390/nano11061570.

    Article  CAS  Google Scholar 

  18. Noorbakhsh M, Ajarostaghi SS, Zaboli M, Kiani B. Thermal analysis of nanofluids flow in a double pipe heat exchanger with twisted tapes insert in both sides. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10738-x.

    Article  Google Scholar 

  19. Mashayekhi R, et al. Heat transfer enhancement of nanofluid flow in a tube equipped with rotating twisted tape inserts: a two-phase approach. Heat Transfer Eng. 2021. https://doi.org/10.1080/01457632.2021.1896835.

    Article  Google Scholar 

  20. Hosseinnezhad R, Akbari OA, Hassanzadeh Afrouzi H, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132:741–59. https://doi.org/10.1007/s10973-017-6900-5.

    Article  CAS  Google Scholar 

  21. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2019;14(135):177–94. https://doi.org/10.1007/s10973-018-7044-y.

    Article  CAS  Google Scholar 

  22. Ilyas SU, Pendyala R, Narahari M. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J Therm Anal Calorim. 2019;29(135):1197–209. https://doi.org/10.1007/s10973-018-7546-7.

    Article  CAS  Google Scholar 

  23. Ali A, Noreen A, Saleem S, Aljohani AF, Awais M. Heat transfer analysis of Cu–Al2O3 hybrid nanofluid with heat flux and viscous dissipation. J Therm Anal Calorim. 2021;143(3):2367–77. https://doi.org/10.1007/s10973-020-09910-6.

    Article  CAS  Google Scholar 

  24. Gupta M, Singh V, Kumar S, Dilbaghi N. Experimental analysis of heat transfer behavior of silver, MWCNT and hybrid (silver+ MWCNT) nanofluids in a laminar tubular flow. J Therm Anal Calorim. 2020;142:1545–59. https://doi.org/10.1007/s10973-020-09453-w.

    Article  CAS  Google Scholar 

  25. Mukesh Kumar PC, Chandrasekar M. Heat transfer and friction factor analysis of MWCNT nanofluids in double helically coiled tube heat exchanger. J Therm Anal Calorim. 2021;144(1):219–31. https://doi.org/10.1007/s10973-020-09444-x.

    Article  CAS  Google Scholar 

  26. Singh SK, Sarkar J. Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. J Therm Anal Calorim. 2021;143.6:4287–98. https://doi.org/10.1007/s10973-020-09380-w.

    Article  CAS  Google Scholar 

  27. Kumar A, et al. Thermohydraulic analysis of twisted tape inserts with SiO_2/H_2 O nanofluid in heat exchanger. Aust J Mech Eng. 2021. https://doi.org/10.1080/14484846.2021.1960672.

    Article  Google Scholar 

  28. Mageshbabu D, et al. Heat transfer and hydraulic characteristics of micro finned tube inserted with twisted tape inserts and hybrid nanofluid (CNT/Al2O3). Adv Mater Process Technol. 2021. https://doi.org/10.1080/2374068X.2021.1872245.

    Article  Google Scholar 

  29. Nakhchi ME, Esfahani JA. Numerical investigation of turbulent CuO–water nanofluid inside heat exchanger enhanced with double V-cut twisted tapes. J Therm Anal Calorim. 2021;145.5:2535–45. https://doi.org/10.1007/s10973-020-09788-4.

    Article  CAS  Google Scholar 

  30. Nakhchi ME, Hatami M, Rahmati M. Effects of CuO nano powder on performance improvement and entropy production of double-pipe heat exchanger with innovative perforated turbulators. Adv Powder Technol. 2021;32.8:3063–74. https://doi.org/10.1016/j.apt.2021.06.020.

    Article  CAS  Google Scholar 

  31. Mashayekhi R, et al. Hydrothermal performance of twisted elliptical tube equipped with twisted tape insert. Int J Thermal Sci. 2022;172:1072. https://doi.org/10.1016/j.ijthermalsci.2021.107233.

    Article  Google Scholar 

  32. Eiamsa-ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Appl Therm Eng. 2014;70(1):896–924. https://doi.org/10.1016/j.applthermaleng.2014.05.062.

    Article  CAS  Google Scholar 

  33. Maddah H, Aghayari R, Farokhi M, Jahanizadeh S, Ashtary K. Effect of twisted-tape turbulators and nanofluid on heat transfer in a double pipe heat exchanger. J Eng. 2014. https://doi.org/10.1155/2014/920970.

    Article  Google Scholar 

  34. Murmu SC, Bhattacharyya S, Chattopadhyay H, Biswas R. Analysis of heat transfer around bluff bodies with variable inlet turbulent intensity: a numerical simulation. Int Commun Heat Mass Trans. 2020;117:1047. https://doi.org/10.1016/j.icheatmasstransfer.2020.104779.

    Article  Google Scholar 

  35. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M. 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Procedia. 2014;49:373–80. https://doi.org/10.1016/j.egypro.2014.03.040.

    Article  Google Scholar 

  36. Bahiraei M, Mazaheri N, Aliee F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technol. 2019;345:692–703. https://doi.org/10.1016/j.powtec.2019.01.060.

    Article  CAS  Google Scholar 

  37. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans Int J. 1998;11(2):151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  38. Takabi B, Shokouhmand H. Effects of Al 2 O 3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int J Mod Phys C. 2015;26(04):1550047. https://doi.org/10.1142/S0129183115500473.

    Article  CAS  Google Scholar 

  39. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7. https://doi.org/10.1016/S0017-9310(99)00369-5.

    Article  CAS  Google Scholar 

  40. Wanatasanappan VV, Abdullah MZ, Gunnasegaran P. Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: an experimental approach. J Mol Liq. 2020;313:113458. https://doi.org/10.1016/j.molliq.2020.113458.

    Article  CAS  Google Scholar 

  41. Eiamsa-ard S, Thianpong C, Eiamsa-ard P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Exp Thermal Fluid Sci. 2010;34(1):53–62. https://doi.org/10.1016/j.expthermflusci.2009.09.002.

    Article  Google Scholar 

  42. Afsharpanah F, Sheshpoli AZ, Pakzad K, Ajarostaghi SSM. Numerical investigation of non-uniform heat transfer enhancement in parabolic trough solar collectors using dual modified twisted-tape inserts. J Thermal Eng. 2021;7(1):133–47. https://doi.org/10.1818/thermal.846584.

    Article  CAS  Google Scholar 

  43. Sowi SA, Abdullah S, Sopian K. The effect of linearly increasing/decreasing pitch ratio twisted tape with various progression rate and nanofluid toward the system performance. Therm Sci Eng Progress. 2021;25:100979. https://doi.org/10.1016/j.tsep.2021.100979.

    Article  CAS  Google Scholar 

  44. Salam B, Biswas B, Saha S, Bhuiya MMK. Heat transfer enhancement in a tube using rectangular-cut twisted tape insert. Procedia Eng. 2013;56:96–103. https://doi.org/10.1016/j.proeng.2013.03.094.

    Article  Google Scholar 

Download references

Funding

No direct funding was received for conducting this study. Although, I acknowledge “NIT Jamshedpur, India” for the providing lab and facilities to complete this research.

Author information

Authors and Affiliations

Authors

Contributions

R. Kumar contributed to literature review, conceptualization, Drafting, Methodology, data collection, analyzing, interpretation of result. P. Kumar contributed to Review, Result analysis and guidance.

Corresponding author

Correspondence to Ravinder Kumar.

Ethics declarations

Conflict of interest

There is no financial or personal conflict of interest between authors which affect the publication process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., kumar, P. Effect of twist ratio on the thermal-hydraulic behavior of an aluminum oxide/cupric oxide nanofluid heat exchanger. J Therm Anal Calorim 149, 4103–4117 (2024). https://doi.org/10.1007/s10973-024-12945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12945-8

Keywords

Navigation