Skip to main content
Log in

Combination of the Parallel/Counter Flows Nanofluid Techniques to Improve the Performances of Double-Tube Thermal Exchangers

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Al2O3 (aluminum oxide)-water nanofluid is utilized in this study to improve the overall performance of a parallel flow thermal exchanger with two coaxial tubes. Numerically, the impacts of hot fluid flow, flow direction, and nanoparticle volume fraction on thermal fields, Nusselt number, and device performance are investigated. The hot fluid’s Reynolds number ranges between 3054 and 7636, whereas the cold fluid’s is set at 3000. The two-equation k-ε SST turbulence model is used to accomplish the numerical simulation. The validation of numerical findings reveals a satisfactory match with the experimental reported values. The obtained results reveal positive effects of increasing fluid flow rates and nanoparticles concentration on the performance of the double-tube thermal device and Nusselt number, especially in the counter flows configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Menni, Y.; Azzi, A.; Chamkha, A.J.: A review of solar energy collectors: models and applications. J. Appl. Comput. Mech. 4(4), 375–401 (2018)

    Google Scholar 

  2. Alliche, M.; Rebhi, R.; Kaid, N.; Menni, Y.; Ameur, H.; Inc, M.; Ahmad, H.; Lorenzini, G.; Aly, A.A.; Elagan, S.K.; Felemban, B.F.: Estimation of the wind energy potential in various North Algerian regions. Energies 14(22), 7564 (2021)

    Article  Google Scholar 

  3. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A.; Wang, H.P. (Eds.) Developments applications of non-Newtonians flows, Vol. 66, pp. 99–105. American society of Mechanical Engineers, New York (1995)

    Google Scholar 

  4. Menni, Y.; Chamkha, A.J.; Azzi, A.: Nanofluid transport in porous media—a review. Spec. Top. Rev. Porous Media 10(1), 49–64 (2019)

    Article  Google Scholar 

  5. Menni, Y.; Chamkha, A.J.; Azzi, A.: Nanofluid flow in complex geometries—a review. J. Nanofluids 8(5), 893–916 (2019)

    Article  Google Scholar 

  6. Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.: Alteration of Thermal conductivity and viscosity of liquid by dispersing Ultra-Fine Particles (dispersion of Al2O3, SiO2, and TiO2 Ultra-fine particles). Netsu Bussei (Japan) 7(4), 227–233 (1993)

    Article  Google Scholar 

  7. Eastman J.A.; Choi S.U.S.; Li S.; Thomson L.J.; Lee, S.: Enhanced thermal conductivity through the development of nanofluids. In: Materials Research Society Symposium Proceedings, vol. 457, pp 3–11. Materials Research Society, Pittsburgh, PA, (1997)

  8. Halelfadl, S.; Maré, T.; Estellé, P.: Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 53, 104–110 (2014)

    Article  Google Scholar 

  9. Ferrouillat, S.; Bontemps, A.; Ribeiro, J.P.; Gruss, J.A.; Soriano, O.: Hydraulic and heat transfer study of SiO2/Water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int. J. Heat Fluid Flow 32, 424–439 (2011)

    Article  Google Scholar 

  10. Albadr, J.; Tayal, S.; Alasadi, M.: Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud. Therm. Eng. 1, 38–44 (2013)

    Article  Google Scholar 

  11. Duangthongsuk, W.; Wongwises, S.: Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int. J. Heat Mass Transf. 52, 2059–2067 (2009)

    Article  Google Scholar 

  12. Tiwari, A.K.; Ghosh, P.; Sarkar, J.: Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int. J. Heat Mass Transf. 89, 1110–1118 (2015)

    Article  Google Scholar 

  13. Nguyen, C.T.; Roy, G.; Gauthier, C.; Galanis, N.: Heat transfer enhancement using Al2O3-water nanofluid for electronic liquid cooling system. Appl. Therm. Eng. 28, 1501 (2007)

    Article  Google Scholar 

  14. Khairul, M.A.; Saidur, R.; Rahman, M.M.; Alim, M.A.; Hossain, A.; Abdin, Z.: Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. Int. J. Heat Mass Transf. 67, 398–403 (2013)

    Article  Google Scholar 

  15. Aly, W.I.A.: Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers. Manag. 79, 304–316 (2014)

    Article  Google Scholar 

  16. Mahammedi, A.; Ameur, H.; Menni, Y.; Medjahed, D.M.: Numerical Study of turbulent flows and convective heat transfer of Al2O3-water nanofluids in a circular tube. J. Adv. Res. Fluid Mech. Therm. Sci. 77(2), 1–12 (2021)

    Google Scholar 

  17. Mirmasoumi, S.; Behzadmehr, A.: Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. Int. J. Heat Fluid Flow 29, 557–566 (2008)

    Article  Google Scholar 

  18. Ho, C.J.; Lin, Y.J.: Turbulent forced convection effectiveness of alumina-water nanofluid in a circular tube with elevated inlet fluid temperatures: an experimental study. Int. Commun. Heat Mass Transf. 57, 247–253 (2014)

    Article  Google Scholar 

  19. Arani, A.A.A.; Amani, J.: Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid. Exp. Therm. Fluid Sci. 44, 520–533 (2013)

    Article  Google Scholar 

  20. Akbarinia, A.: Impacts of nanofluid flow on skin friction factor and Nusselt number in curved tubes with constant mass flow. Int. J. Heat Fluid Flow 29(1), 229–241 (2008)

    Article  Google Scholar 

  21. Sarafraz, M.M.; Hormozi, F.: Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger. Int. Commun. Heat Mass Transf. 53, 116–123 (2014)

    Article  Google Scholar 

  22. Darzi, A.A.R.; Farhadi, M.; Sedighi, K.: Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int. Commun. Heat Mass Transf. 47, 105–112 (2013)

    Article  Google Scholar 

  23. Heris, S.Z.; Etemad, S.G.; Esfahany, M.N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf. 33, 529 (2006)

    Article  Google Scholar 

  24. Heris, S.Z.; Esfahany, M.N.; Etemad, S.G.: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int. J. Heat Fluids Flow 28(2), 203 (2007)

    Article  Google Scholar 

  25. Wang, X.; Xu, X.; Choi, S.: Thermal conductivity of nanoparticles fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999)

    Article  Google Scholar 

  26. Hamilton, R.; Crosser, O.: Thermal conductivity of heterogeneous two component systems. I EC Fundam. 3, 187–191 (1962)

    Article  Google Scholar 

  27. Agarwal, D.K.; Vaidyanathan, A.; Kumar, S.S.: Investigation on convective heat transfer behaviour of kerosene-Al2O3 nanofluid. Appl. Therm. Eng. 84, 64–73 (2015)

    Article  Google Scholar 

  28. Menni, Y.; Chamkha, A.J.; Lorenzini, G.; Kaid, N.; Ameur, H.; Bensafi, M.: Advances of nanofluids in solar collectors—A review of numerical studies. Math. Model. Eng. Probl. 6(3), 415–427 (2019)

    Article  Google Scholar 

  29. Ahmad, H.; Sakhri, N.; Menni, Y.; Omri, M.; Ameur, H.: Experimental study of the efficiency of earth-to-air heat exchangers: effect of the presence of external fans. Case Stud. Therm. Eng. 28, 101461 (2021). https://doi.org/10.1016/j.csite.2021.101461

    Article  Google Scholar 

  30. Menni, Y.; Chamkha, A.J.; Ameur, H.: Advances of nanofluids in heat exchangers—a Review. Heat Transf. 49(8), 4321–4349 (2020)

    Article  Google Scholar 

  31. Menni, Y.; Chamkha, A.J.; Ghazvini, M.; Ahmadi, M.H.; Ameur, H.; Issakhov, A.; Inc, M.: Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids. Numer. Heat Transf. Part A Appl. 79(4), 311–351 (2021)

    Article  Google Scholar 

  32. Ameur, H.; Kamla, Y.; Sahel, D.: Numerical investigation of the cooling of shear thinning fluids in cylindrical horizontal ducts. J. Comput. Eng. Phys. Model. 1, 54–64 (2018)

    Google Scholar 

  33. Azevedo, I.; Lebouche, M.; Devienne, R.: Laminar cooling of pseudo plastic fluids flowing through cylindrical horizontal pipes. Int. J. Heat Fluid Flow 16, 125–130 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hijaz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahmer, D., Benamara, N., Ahmad, H. et al. Combination of the Parallel/Counter Flows Nanofluid Techniques to Improve the Performances of Double-Tube Thermal Exchangers. Arab J Sci Eng 47, 7789–7796 (2022). https://doi.org/10.1007/s13369-022-06670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06670-3

Keywords

Navigation