Skip to main content
Log in

The influence of the functionalization of polystyrene and graphene oxide composites on the flammability characteristics: modeling with artificial intelligence tools

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper tackles the influence of the functionalization of polystyrene and graphene oxide (GO) composites on the flammability characteristics. A microscale combustion calorimeter (MCC) was used to experimentally determine the heat release capacity (HRC), the specific heat release rate (HRR) and the total heat released (THR). Neural models were designed that correlate the THR with a number of parameters related to the composition and type of flame retardant used, the heating rate, the amount of residue, the HRC, the peak heat release rate (PHRR), the temperature at the peak pyrolysis rate (TPHRR) and the time elapsed until the occurrence of the peak heat release rate (Time). The best results in the training, validation and testing stages were achieved with the neural model with 9 neurons in the input layer, 40 neurons in the hidden layer and one neuron in the output layer. This model was incorporated into an optimization procedure, based on a genetic algorithm, to establish the values of the input parameters used in the training of the neural networks, in order to generate a minimum THR value, which is the output parameter. Since the synthesis of polystyrene particles with different GO concentrations is costly, this research helps to reduce the number of experimental tests and allows to determine the best GO concentration by means of neural models and genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lyon RE, Takemori MT, Safronava N. Stoliarov SI Walters RN, A molecular basis for polymer flammability. Polymer. 2009;50:2608–17. https://doi.org/10.1016/j.polymer.2009.03.047.

    Article  CAS  Google Scholar 

  2. Nie C, Yang J, Deng G, Feng Y, Shi Y. Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites. J Therm Anal Calorim. 2023;148:10051–63. https://doi.org/10.1007/s10973-023-12366-z.

    Article  CAS  Google Scholar 

  3. Liu M, Chen K, Shi Y, Wu S, Feng Y, Fu L, Gao J, Tang L, Yang F. Mechanically strong hierarchical nanosystem for fire protection and electromagnetic interference shielding. Compos B: Eng. 2023;261: 110795. https://doi.org/10.1016/j.compositesb.2023.110795.

    Article  Google Scholar 

  4. Liu C, Wu W, Shi Y, Yang F, Liu M, Chen Z, Yu B, Feng Y. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos B: Eng. 2020;203: 108486. https://doi.org/10.1016/j.compositesb.2020.108486.

    Article  CAS  Google Scholar 

  5. Gao C, Shi Y, Chen Y, Zhu S, Feng Y, Lv Y, Yang F, Liu M, Shui W. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. J Colloid Interface Sci. 2022;606:1193–204. https://doi.org/10.1016/j.jcis.2021.08.091.

    Article  CAS  PubMed  Google Scholar 

  6. Huang R, Gao C, Shi Y, Fu L, Feng Y, Shui W. Synergistic function between phosphorus containing flame retardant and multi-walled carbon nanotubes towards fire safe polystyrene composites with enhanced electromagnetic interference shielding. Int J Mol Sci. 2022;23:13434. https://doi.org/10.3390/ijms232113434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyon RE, Walters RN, Stoliarov SI. Thermal analysis of flammability. J Therm Anal Calorim. 2007;89:441–8. https://doi.org/10.1007/s10973-006-8257-z.

    Article  CAS  Google Scholar 

  8. Lyon RE, Walters RA, Microscale combustion calorimeter (No. DOT/FAA/AR-01/117). Federal Aviation Administration Washington DC Office of Aviation Research, 2002.

  9. Lu H, Wilkie CA. Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym Degrad Stab. 2010;95:564–71. https://doi.org/10.1016/j.polymdegradstab.2009.12.011.

    Article  CAS  Google Scholar 

  10. Keshavarz MH, Dashtizadeh A, Motamedoshariati H, Soury H. A simple model for reliable prediction of the specific heat release capacity of polymers as an important characteristic of their flammability. J Therm Anal Calorim. 2017;128:417–26. https://doi.org/10.1007/s10973-016-5935-3.

    Article  CAS  Google Scholar 

  11. Parandekar PV, Browning AR, Prakash O. Modeling the flammability characteristics of polymers using quantitative structure–property relationships (QSPR). Polym Eng Sci. 2015;55:1553–9. https://doi.org/10.1002/pen.24093.

    Article  CAS  Google Scholar 

  12. Atabaki F, Keshavarz MH, Noorollahy BN. A simple method for the reliable prediction of Char Yield of polymers. Z Anorg Allg Chem. 2017;643:1049–56. https://doi.org/10.1002/zaac.201700197.

    Article  CAS  Google Scholar 

  13. Atabaki F, Keshavarz MH, Bastam NN. The simplest model for reliable prediction of the total heat release of polymers for assessment of their combustion properties. J Therm Anal Calorim. 2018;131:2235–42. https://doi.org/10.1007/s10973-017-6776-4.

    Article  CAS  Google Scholar 

  14. Khan PM, Roy K. Chemometric modelling of heat release capacity, total heat release and char formation of polymers to assess their flammability characteristics. Mol Inform. 2020;41: e2000030. https://doi.org/10.1002/minf.202000030.

    Article  CAS  PubMed  Google Scholar 

  15. Asante-Okyere S, Xu Q, Mensah RA, Jin C, Ziggah YY. Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA). Thermochim Acta. 2018;667:79–92. https://doi.org/10.1016/j.tca.2018.07.008.

    Article  CAS  Google Scholar 

  16. Mensah RA, Jiang L, Asante-Okyere S, Xu Q, Jin C. Comparative evaluation of the predictability of neural network methods on the flammability characteristics of extruded polystyrene from microscale combustion calorimetry. J Therm Anal Calorim. 2019;138:3055–64. https://doi.org/10.1007/s10973-019-08335-0.

    Article  CAS  Google Scholar 

  17. Rein G, Lautenberger CA, Fernandez-Pello C, Torero JL, Urban DL. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame. 2006;146:95–108. https://doi.org/10.1016/j.combustflame.2006.04.013.

    Article  CAS  Google Scholar 

  18. Lautenberger C, Rein G, Fernandez-Pello C. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J. 2006;41:204–14. https://doi.org/10.1016/j.firesaf.2005.12.004.

    Article  Google Scholar 

  19. Chang H-C, Park W-H, Kyung-Beom Y, Kim T-K, Lee D-H. Jung W-S, Inverse estimation of properties for charring material using a hybrid genetic algorithm. J Mech Sci Technol. 2011;25:1429–37. https://doi.org/10.1007/s12206-011-0402-3.

    Article  Google Scholar 

  20. Mensah RA, Xiao J, Das O, Jiang L, Xu Q, Alhassan MO. Application of adaptive neuro-fuzzy inference system in flammability parameter prediction. Polymers. 2020;12:122. https://doi.org/10.3390/polym12010122.

    Article  CAS  Google Scholar 

  21. Kalathingal MSH, Basak S, Jayeeta M. Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. J Food Process Eng. 2020;43: e13128. https://doi.org/10.1111/jfpe.13128.

    Article  Google Scholar 

  22. Cardozo SD, Gomes HM, Awruch AM. Optimization of laminated composite plates and shells using genetic algorithms, neural networks and finite elements. Lat Am J Solids Struct. 2011;8:413–27. https://doi.org/10.1590/S1679-78252011000400003.

    Article  Google Scholar 

  23. Stroe M, Cristea M, Matei E, Galatanu A, Cotet LC, Pop LC, Baia M, Danciu V, Anghel I, Baia L, Baibarac MA. Optical properties of composites based on graphene oxide and polystyrene. Molecules. 2020;25:2419. https://doi.org/10.3390/molecules25102419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cotet LC, Baia GL, Danciu V. Chemical exfoliation obtaining process of large area graphene based materials (graphene oxide and reduced graphene oxide) OSIM Patent, RO131216B1/ 2018

  25. Cotet LC, Magyari K, Todea M, Dudescu MC, Danciu V, Baia L. Versatile self-assembled graphene oxide membranes obtained in ambient conditions by using a water-ethanol suspension. J Mater Chem A. 2017;5:2132–42. https://doi.org/10.1039/C6TA08898H.

    Article  CAS  Google Scholar 

  26. Bao C, Guo Y, Yuan B, Hu Y, Song L. Functionalized graphene oxide for fire safetyapplications of polymers: a combination of condensedphase flame retardantstrategies. J Mater Chem. 2012;22:23057–63. https://doi.org/10.1039/C2JM35001G.

    Article  CAS  Google Scholar 

  27. Anghel I, Lisa G, Sofran I-E, Mitroi-Symeonidis F-C, Rusu MM, Baia M, Baia L, Magyari K, Danciu V, Cotet LC, Stroie M, Baibarac M. Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)- propyltrimethoxysilane. J Polym Eng. 2021;41:615–26. https://doi.org/10.1515/polyeng-2021-0071.

    Article  CAS  Google Scholar 

  28. ASTM International, Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry, (2013).

  29. Walters RN, Safronava N, Lyon RE. A microscale combustion calorimeter study of gas phase combustion of polymers. Combust Flame. 2015;162:855–63. https://doi.org/10.1016/j.combustflame.2014.08.008.

    Article  CAS  Google Scholar 

  30. Sonnier R, Ferry L, Longuet C, Laoutid F, Friederich B, Laachachi A, Lopez-Cuesta JM. Combining cone calorimeter and PCFC to determine the mode of action of flame-retardant additives. Polym Adv Technol. 2011;22(7):1091–9. https://doi.org/10.1002/pat.1989.

    Article  CAS  Google Scholar 

  31. Lowden LA, Hull TR. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci Rev. 2013;2:4. https://doi.org/10.1186/2193-0414-2-4.

    Article  CAS  Google Scholar 

  32. Ayoola BO, Balachandran R, Frank JH, Mastorakos E, Kaminski CF. Spatially resolved heat release rate measurements in turbulent premixed flames. Combust Flame. 2006;144:1–6. https://doi.org/10.1016/j.combustflame.2005.06.005.

    Article  CAS  Google Scholar 

  33. Lyon RE, Speitel L, Walters RN, Crowley S. Fire-resistant elastomers. Fire Mater. 2003;27:195–208. https://doi.org/10.1002/fam.828.

    Article  CAS  Google Scholar 

  34. Cogen JM, Lin TS, Lyon RE. Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater. 2009;33:33–50. https://doi.org/10.1002/fam.980.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI—UEFISCDI, Project Number PN-III-P2-2.1-PED-2021-3156, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catălin Lisa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anghel, I., Lisa, C., Curteanu, S. et al. The influence of the functionalization of polystyrene and graphene oxide composites on the flammability characteristics: modeling with artificial intelligence tools. J Therm Anal Calorim 149, 2805–2824 (2024). https://doi.org/10.1007/s10973-023-12869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12869-9

Keywords

Navigation