Skip to main content
Log in

Biophysical study of the effect of ovalbumin and lysozyme in DMPC/sphingomyelin/cholesterol bilayers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The cell is separated from the external environment by a lipid bilayer. In this biological interface, phospholipids and proteins play relevant roles on both the outer and inner sides. Understanding lipid–protein interactions is important to advance our knowledge of the relation between membrane properties and cell’s functions in order to reveal the driving forces behind membrane-related processes and to develop new biomedical applications. To this end, one strategy is to study lipid–protein interactions by determining thermodynamic properties of lipid membrane models in interactions with proteins. In this work, we present a systematic biophysical investigation exploring how changes in membrane properties promote the interaction of proteins with the lipid bilayer. We studied the interaction of ovalbumin (OVA) and lysozyme (LYZ) with DMPC/sphingomyelin/cholesterol (MSC) membranes (using large unilamellar vesicles, LUVs, as membrane models) by differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Our results show that lipid bilayer composition, large incubation time periods, and the membrane phase are determinants to induce nonspecific lipid–protein interactions at the level of the lipid bilayer-water interface, significantly modifying the membrane thermal response. We demonstrated that cholesterol and sphingomyelin not only rule the thermodynamic properties of pure lipid membranes but also regulate the cooperativity and interactions in lipid/protein systems. Our results contribute to a better understanding of the driving forces of lipid–protein interactions in the bilayer and could be of practical reference for the designing and development of new applications related to biomembrane interactions, for example, smart drug delivery systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DSC:

Differential scanning calorimetry

DLS:

Dynamic light scattering

LUVs:

Large unilamellar vesicles

T m :

Phase transition temperature

C p :

Specific heat capacity at constant pressure

ΔH :

Enthalpy change

ΔT 1/2 :

The width of the transition at half peak height

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

SM:

Sphingomyelin from brain porcine

Chol:

Cholesterol

OVA:

Albumin from chicken egg white

LYZ:

Lysozyme from chicken egg white

MSC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine/sphingomyelin/cholesterol

References

  1. Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol. 2008;18(6):756–64. https://doi.org/10.1016/j.sbi.2008.10.002.

    Article  CAS  PubMed  Google Scholar 

  2. Heimburg T. Lipid melting and Lipid–Protein Interactions, In: Heimburg T, editor. Thermal Biophysics of Membranes. 1st ed. Germany: Wiley; 2007. p. 75–98; 141–163. https://doi.org/10.1002/9783527611591.ch6

  3. Schmitt C, Lippert AH, Bonakdar N, Sandoghdar V, Voll LM. Compartmentalization and transport in synthetic vesicles. Front Bioeng Biotechnol. 2016;4(19):1–19. https://doi.org/10.3389/fbioe.2016.00019.

    Article  Google Scholar 

  4. Eytan GD. Use of liposomes for reconstitution of biological functions. BBA-Rev Biomembr. 1982;694(2):185–202. https://doi.org/10.1016/0304-4157(82)90024-7.

    Article  CAS  Google Scholar 

  5. Davis RW, Flores A, Barrick TA, Cox JM, Brozik SM, Lopez GP, Brozik JA. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins. Langmuir. 2007;23(7):3864–72. https://doi.org/10.1021/la062576t.

    Article  CAS  PubMed  Google Scholar 

  6. Shen HH, Lithgow T, Martin L. Reconstitution of membrane proteins into model membranes: seeking better ways to retain protein activities. Int J Mol Sci. 2013;14(1):1589–607. https://doi.org/10.3390/ijms14011589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rigaud JL, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. BBA-Bioenerg. 1995;1231(3):223–46. https://doi.org/10.1016/0005-2728(95)00091-V.

    Article  Google Scholar 

  8. Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B. 2021;9(24):4773–92. https://doi.org/10.1039/d1tb00126d.

    Article  CAS  PubMed  Google Scholar 

  9. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freire E, Markello T, Rigell C, Holloway PW. Calorimetric and fluorescence characterization of interactions between cytochrome b5 and phosphatidylcholine bilayers. Biochemistry. 1983;22(7):1675–80. https://doi.org/10.1021/bi00276a024.

    Article  CAS  PubMed  Google Scholar 

  11. Ivanova VP, Makarov IM, Schäffer TE, Heimburg T. Analyzing heat capacity profiles of peptide-containing membranes: cluster formation of gramicidin A. Biophys J. 2003;84(4):2427–39. https://doi.org/10.1016/S0006-3495(03)75047-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beaven AH, Maer AM, Sodt AJ, Rui H, Pastor RW, Andersen OS, Im W. Gramicidin A channel formation induces local lipid redistribution I: experiment and simulation. Biophys J. 2017;112(6):1185–97. https://doi.org/10.1016/j.bpj.2017.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alonso A, Restall CJ, Turner M, Gomez-Fernandez JC, Goñi FM, Chapman D. Protein-lipid interactions and differential scanning calorimetric studies of bacteriorhodopsin reconstituted lipid-water systems. BBA-Biomembr. 1982;689(2):283–9. https://doi.org/10.1016/0005-2736(82)90261-9.

    Article  CAS  Google Scholar 

  14. Botelho AV, Huber T, Sakmar TP, Brown MF. Curvature and Hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J. 2006;91(12):4464–77. https://doi.org/10.1529/biophysj.106.082776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oropeza-Guzman E, Ruiz-Suárez JC. Dehydration/rehydration cycles for mixing phospholipids without the use of organic solvents. Langmuir. 2018;34(23):6869–73. https://doi.org/10.1021/acs.langmuir.8b00799.

    Article  CAS  PubMed  Google Scholar 

  16. Pérez-Isidoro R, Guevara-Pantoja FJ, Ventura-Hunter C, Guerrero-Sánchez C, Ruiz-Suárez JC, Schubert US, Saldívar-Guerra E. Fluidized or not fluidized? Biophysical characterization of biohybrid lipid/protein/polymer liposomes and their interaction with tetracaine. BBA-Gen Subj. 2023;1867(2): 130287. https://doi.org/10.1016/j.bbagen.2022.130287.

    Article  CAS  Google Scholar 

  17. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72. https://doi.org/10.1038/42408.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes? Chem Phys Lipids. 2014;184:82–104. https://doi.org/10.1016/j.chemphyslip.2014.10.004.

    Article  CAS  PubMed  Google Scholar 

  19. Keyvanloo A, Shaghaghi M, Zuckermann MJ, Thewalt JL. The Phase behavior and organization of sphingomyelin/cholesterol membranes: a deuterium NMR study. Biophys J. 2018;114(6):1344–56. https://doi.org/10.1016/j.bpj.2018.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lesnierowski G, Kijowski J. Lysozyme. In: Huopalathi R, Lopez R, Anton M, Schade R, editors. Bioactive egg compounds. Berlin, Heidelberg: Springer; 2007. p. 33–42. https://doi.org/10.1007/978-3-540-37885-3_6.

    Chapter  Google Scholar 

  21. Sponton OE, Perez AA, Carrara CR, Santiago LG. Impact of environment conditions on physicochemical characteristics of ovalbumin heat-induced nanoparticles and on their ability to bind PUFAs. Food Hydrocoll. 2015;48:165–73. https://doi.org/10.1016/j.foodhyd.2015.02.011.

    Article  CAS  Google Scholar 

  22. Zang D, Tarafdar S, Tarasevich YY, Dutta Choudhury M, Dutta T. Evaporation of a droplet: from physics to applications. Phys Rep. 2019;804:1–56. https://doi.org/10.1016/j.physrep.2019.01.008.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7.

    Article  CAS  PubMed  Google Scholar 

  24. Lewis RNAH, Mannock DA, McElhaney RN. Differential scanning calorimetry in the study of lipid phase transitions in model and biological membranes. In: Dopico AM, editor. Methods in Membrane Lipids and Methods in Molecular Biology. Totowa: Humana Press; 2007. p. 171–95.

    Google Scholar 

  25. Peters R. Fiber optic device for detecting the scattered light or fluorescent light from a suspension. Google Patents; 2000. p. US Patent 6,016,195.

  26. Amin S, Rega CA, Jankevics H. Detection of viscoelasticity in aggregating dilute protein solutions through dynamic light scattering-based optical microrheology. Rheol Acta. 2012;51:329–42. https://doi.org/10.1007/s00397-011-0606-6.

    Article  CAS  Google Scholar 

  27. Pérez-Isidoro R, Ruiz-Suárez JC. Thermal behavior of a lipid–protein membrane model and the effects produced by anesthetics and neurotransmitters. BBA-Biomembr. 2020;1862(2): 183099. https://doi.org/10.1016/j.bbamem.2019.183099.

    Article  CAS  Google Scholar 

  28. Biltonen RL, Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem Phys Lipids. 1993;64(1–3):129–42. https://doi.org/10.1016/0009-3084(93)90062-8.

    Article  CAS  Google Scholar 

  29. Biltonen RL. A statistical-thermodynamic view of cooperative structural changes in phospholipid bilayer membranes: their potential role in biological function. J Chem Thermodyn. 1990;22(1):1–19. https://doi.org/10.1016/0021-9614(90)90026-M.

    Article  CAS  Google Scholar 

  30. Mannock DA, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophys J. 2006;91(9):3327–40. https://doi.org/10.1529/biophysj.106.084368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McMullen TPW, McElhaney RN. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. BBA-Biomembr. 1995;1234(1):90–8. https://doi.org/10.1016/0005-2736(94)00266-R.

    Article  Google Scholar 

  32. Weiss MS, Palm GL, Hilgenfeld R. Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD. Acta Crystallogr Sect D Struct Biol. 2000;56:952–8. https://doi.org/10.1107/S0907444900006685.

    Article  ADS  CAS  Google Scholar 

  33. Stein PE, Leslie AGW, Finch JT, Carrell RW. Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J Mol Biol. 1991;221(3):941–59. https://doi.org/10.1016/0022-2836(91)80185-W.

    Article  CAS  PubMed  Google Scholar 

  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  35. Di Foggia M, Bonora S, Tugnoli V. DSC and Raman study on the effect of lysozyme and bovine serum albumin on phospholipids liposomes. J Therm Anal Calorim. 2013;111:1871–80. https://doi.org/10.1007/s10973-012-2842-0.

    Article  CAS  Google Scholar 

  36. Tsunoda T, Imura T, Kadota M, Yamazaki T, Yamauchi H, Kwon KO, Yokoyama S, Sakai H, Abe M. Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes. Colloids Surf B Biointerfaces. 2001;20(2):155–63. https://doi.org/10.1016/S0927-7765(00)00188-0.

    Article  CAS  PubMed  Google Scholar 

  37. Al Kayal T, Nappini S, Russo E, Berti D, Bucciantini M, Stefani M, Baglioni P. Lysozyme interaction with negatively charged lipid bilayers: protein aggregation and membrane fusion. Soft Matter. 2012;8(16):4524–34. https://doi.org/10.1039/c2sm06906g.

    Article  ADS  CAS  Google Scholar 

  38. Luo JJ, Wu FG, Qin SS, Yu ZW. In situ unfolded lysozyme induces the lipid lateral redistribution of a mixed lipid model membrane. J Phys Chem B. 2012;116(41):12381–8. https://doi.org/10.1021/jp304339t.

    Article  CAS  PubMed  Google Scholar 

  39. Croguennec T, Renault A, Beaufils S, Dubois JJ, Pezennec S. Interfacial properties of heat-treated ovalbumin. J Colloid Interface Sci. 2007;315(2):627–36. https://doi.org/10.1016/j.jcis.2007.07.041.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Schenkman S, Araujo PS, Dukman R, Quina FH, Chaimovich H. Effects of temperature and lipid composition on the serum albumin-induced aggregation and fusion of small unilamellar vesicles. BBA-Biomembr. 1981;649(3):633–41. https://doi.org/10.1016/0005-2736(81)90168-1.

    Article  CAS  Google Scholar 

  41. Gorbenko GP, Ioffe VM, Kinnunen PKJ. Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys J. 2007;93(1):140–53. https://doi.org/10.1529/biophysj.106.102749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruggeri F, Zhang F, Lind T, Bruce ED, Lau BLT, Cárdenas M. Non-specific interactions between soluble proteins and lipids induce irreversible changes in the properties of lipid bilayers. Soft Matter. 2013;9(16):4219–26. https://doi.org/10.1039/c3sm27769k.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ioffe V, Gorbenko GP. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophys Chem. 2005;114(2–3):199–204. https://doi.org/10.1016/j.bpc.2004.11.010.

    Article  CAS  PubMed  Google Scholar 

  44. Newville M, Stensitzki T, Allen DB, Rawlik M, Ingargiola A. LMFIT: non-linear least-square minimization and curve-fitting for Python (1.0.2). Zenodo. 2021. https://doi.org/10.5281/zenodo.11813.

  45. Ranganathan R, Alshammri I, Peric M. Lipid organization in mixed lipid membranes driven by intrinsic curvature difference. Biophys J. 2020;118(8):1830–7. https://doi.org/10.1016/j.bpj.2020.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hossein A, Deserno M. Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys J. 2020;118(3):624–42. https://doi.org/10.1016/j.bpj.2019.11.3398.

    Article  CAS  PubMed  Google Scholar 

  47. Brown MF. Soft matter in lipid–protein interactions. Annu Rev Biophys. 2017;46:379–410. https://doi.org/10.1146/annurev-biophys-070816-033843.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang W, Coughlin ML, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Influence of cholesterol and bilayer curvature on the interaction of PPO-PEO block copolymers with liposomes. Langmuir. 2019;35(22):7231–41. https://doi.org/10.1021/acs.langmuir.9b00572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zimmerberg J, Kozlov MM. How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol. 2006;7:9–19. https://doi.org/10.1038/nrm1784.

    Article  CAS  PubMed  Google Scholar 

  50. Helfrich W. Elastic Properties of lipid bilayers: theory and possible experiments. Zeitschrift Fur Naturforsch C. 1973;28(11–12):693–703. https://doi.org/10.1515/znc-1973-11-1209.

    Article  CAS  Google Scholar 

  51. Brown MF. Curvature forces in membrane lipid–protein interactions. Biochemistry. 2012;51(49):9782–95. https://doi.org/10.1021/bi301332v.

    Article  CAS  PubMed  Google Scholar 

  52. Heimburg T, Hildebrandt P, Marsh D. Cytochrome c-lipid Interactions studied by resonance raman and phosphorus-31 NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry. 1991;30(37):9084–9. https://doi.org/10.1021/bi00101a025.

    Article  CAS  PubMed  Google Scholar 

  53. McMahon HT, Boucrot E. Membrane curvature at a glance. J Cell Sci. 2015;128(6):1065–70. https://doi.org/10.1242/jcs.114454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sáenz A, Cañadas O, Bagatolli LA, Johnson ME, Casals C. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4. FEBS J. 2006;273(11):2515–27. https://doi.org/10.1111/j.1742-4658.2006.05258.x.

    Article  CAS  PubMed  Google Scholar 

  55. Heimburg T, Marsh D. Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study. Biophys J. 1993;65:2408–17. https://doi.org/10.1016/S0006-3495(93)81299-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Il KB, Kim I, Yang MY, Jo SD, Koo K, Shin SY, Park KM, Yuk JM, Lee E, Nam YS. Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicles. J Control Release. 2021;331:187–97. https://doi.org/10.1016/j.jconrel.2021.01.004.

    Article  CAS  Google Scholar 

  57. Kumari A, Saha D, Bhattacharya J, Aswal VK, Moulick RG. Studying the structural organization of non-membranous protein hemoglobin in a lipid environment after reconstitution. Int J Biol Macromol. 2023;243: 125212. https://doi.org/10.1016/j.ijbiomac.2023.125212.

    Article  CAS  PubMed  Google Scholar 

  58. Papagiannopoulos A, Sklapani A, Len A, Radulescu A, Pavlova E, Slouf M. Protein-induced transformation of unilamellar to multilamellar vesicles triggered by a polysaccharide. Carbohydr Polym. 2023;303: 120478. https://doi.org/10.1016/j.carbpol.2022.120478.

    Article  CAS  PubMed  Google Scholar 

  59. Díaz-Salazar AJ, Pérez-Casas S, Pérez-Isidoro R. Hybrid liposomes of DPPC/cholesterol/octyl-β-D-glucopyranoside with/without ibuprofen: thermal and morphological study. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12704-1.

    Article  Google Scholar 

Download references

Acknowledgements

RP-I thanks DGAPA-UNAM for a postdoctoral scholarship and acknowledges CONAHCYT-México for supporting in part the writing of this work via a postdoctoral fellowship. We thank Dra. Josefa Bernard for the use of her DLS equipment, Dra. Paola Moreno-Alvarez and Dr. Alfredo Cabrera-Orefice for their helpful comments on the manuscript.

Funding

This work was supported by DGAPA-UNAM Postdoctoral Grants Program, PAPIIT IN204616, and PAIP-FQ-UNAM 5000–9018.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RP-I and MC; Methodology and data analysis: RP-I and AJD-S; Writing-original draft preparation: RP-I; Review and editing: RP-I, MC, and AJD-S; Funding acquisition: MC; Resources: RP-I, MC, and AJD-S; Supervision: RP-I and MC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to R. Pérez-Isidoro or M. Costas.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 466 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Isidoro, R., Díaz-Salazar, A.J. & Costas, M. Biophysical study of the effect of ovalbumin and lysozyme in DMPC/sphingomyelin/cholesterol bilayers. J Therm Anal Calorim 149, 1219–1229 (2024). https://doi.org/10.1007/s10973-023-12784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12784-z

Keywords

Navigation