Skip to main content
Log in

Role of ZnO-nano-thin-film-layered micro/nanostructured surfaces on flow boiling heat transfer characteristics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Numerous energy systems, including distillation, power production, air conditioning, cooling, and purification, use evaporation and flow boiling in minichannels. In this study, we show noticeably higher heat transfer coefficients and critical heat flux of 182% and 114% during DI water flow boiling in ZnO-nano-thin-film nanostructured (∼110–423 nm), industrial-scale-heated copper bottom surface. By using a combination of the sol–gel spin coating and annealing methods, we produce durable and highly conformal nanostructured surfaces that enable scale nano-manufacturing. Flow boiling experiments were carried out in 1.5 mm height bottom surface-heated minichannel using DI water as the working fluid. In order to measure the effectiveness of present method and clarify how the structural length scale affects it, the present study ZnO-nano-thin-film structured surfaces are compared with previously published micro/nano-scale fabricated surfaces, demonstrating the necessity and importance of the nanoscale properties of ZnO-nano-thin films for improvement. The surfaces of the nano-thin film were subjected to durability testing utilizing a seven-day continuous flow boiling experiment, which revealed minor deterioration. The higher boiling performance is achieved on ZnO-TF-423 is due to the proper bonding between polished copper bare surface (BS) and deposited ZnO thin films. Additionally, the rough surface on BS allows the copper and ZnO thin films to bind properly. It can be concluded that surfaces made using an efficient sol–gel spin coating process possesses superior boiling heat transfer capabilities at comparatively lower surface temperatures, suggesting a smaller chance of damaging the surface from rising temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Data and materials will be provided on request.

Abbreviations

A cs :

Cross-sectional area

h :

Heat transfer coefficient

I :

Current

k :

Thermal conductivity

q :

Heat flux

T fa :

Average fluid temperature

T s :

Boiling surface temperature

T in :

Fluid inlet temperature

T out :

Fluid outlet temperature

V :

Voltage

BHT:

Boiling heat transfer

CHF:

Critical heat flux

EDM:

Electric discharge machining

HTC:

Heat transfer coefficient

References

  1. Collaudin B, Rando N. Cryogenics in space: a review of the missions and of the technologies. Cryogenics. 2000;40:797–819.

    Article  ADS  CAS  Google Scholar 

  2. Hung T-C, Shai T, Wang SK. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy. 1997;22:661–7.

    Article  CAS  Google Scholar 

  3. Mumraiz S, Ali A, Awais M, Shutaywi M, Shah Z. Entropy generation in electrical magnetohydrodynamic flow of Al2O3–Cu/H2O hybrid nanofluid with non-uniform heat flux. J Therm Anal Calorim. 2021;143:2135–48.

    Article  CAS  Google Scholar 

  4. Tassaddiq A, Khan S, Bilal M, Gul T, Mukhtar S, Shah Z, Bonyah E. Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Adv. 2020;10(5).

  5. El-Dessouky HT, Ettouney HM. Fundamentals of salt water desalination. Elsevier; 2002.

    Google Scholar 

  6. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K-T, Lee JH. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci. 2011;36:813–43.

    Article  CAS  Google Scholar 

  7. Earle MJ, Esperanca JM, Gilea MA, Lopes JNC, Rebelo LP, Magee JW, Seddon KR, Widegren JA. The distillation and volatility of ionic liquids. Nature. 2006;439:831–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Armarego WL. Purification of laboratory chemicals. Butterworth-Heinemann; 2017.

    Google Scholar 

  9. Agonafer D, Spector MS, Miljkovic N. Materials and interface challenges in high vapor quality two-phase flow boiling research. IEEE Trans Compon Packag Manuf Technol. 2021. https://doi.org/10.1109/TCPMT.2021.3085255.

    Article  Google Scholar 

  10. Mousa MH, Miljkovic N, Nawaz K. Review of heat transfer enhancement techniques for single phase flows. Renew Sustain Energy Rev. 2021;137: 110566.

    Article  Google Scholar 

  11. Saitoh S, Daiguji H, Hihara E. Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. Int J Heat Mass Transf. 2005;48:4973–84.

    Article  CAS  Google Scholar 

  12. Baliga BJ. Gallium nitride and silicon carbide power devices. World Scientific Publishing Company; 2016.

    Google Scholar 

  13. Wei J. Challenges in cooling design of CPU packages for high-performance servers. Heat Transfer Eng. 2008;29:178–87.

    Article  ADS  Google Scholar 

  14. Singh SK, Sharma D. Review of pool and flow boiling heat transfer enhancement through surface modification. Int J Heat Mass Transf. 2021;1(181): 122020.

    Article  Google Scholar 

  15. Li D, Wu G, Wang W, Wang Y, Liu D, Zhang D, Chen Y, Peterson G, Yang R. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithicallyintegrated silicon nanowires. Nano Lett. 2012;12:3385–90.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zhu Y, Antao DS, Chu K-H, Chen S, Hendricks TJ, Zhang T, Wang EN. Surface structure enhanced microchannel flow boiling. J Heat Transf. 2016;138: 091501.

    Article  Google Scholar 

  17. Shin S, Choi G, Kim BS, Cho HH. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid. Energy. 2014;79:428–35.

    Article  Google Scholar 

  18. Sun B, Yang D. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube. Int J Refrig. 2014;38:206–14.

    Article  CAS  Google Scholar 

  19. Sun Z-C, Ma X, Ma L-X, Li W, Kukulka DJ. Flow boiling heat transfer characteristics in horizontal. Three-Dimens Enhanc Tubes Energ. 2019;12:927.

    CAS  Google Scholar 

  20. Kaya A, Demiryurek R, Armagan E, Ozaydin-Ince G, Sezen M, Kosar A. Boiling heat transfer enhancement in mini/microtubes via polyhydroxyethylmethacrylate (pHEMA) coatings on Inner Microtube Walls at High Mass Fluxes. J Micromech Microeng. 2013;23: 115017.

    Article  Google Scholar 

  21. Bai P, Tang T, Tang B. Enhanced Flow Boiling In Parallel Microchannels With Metallic Porous Coating. Appl Therm Eng. 2013;58:291–7.

    Article  CAS  Google Scholar 

  22. Morshed A, Paul TC, Khan J. Effect of Cu−Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl Therm Eng. 2013;51:1135–43.

    Article  CAS  Google Scholar 

  23. Singh SK, Sharma D, Singh AK. Numerical Investigation on Pool Boiling Heat Transfer of Silica and Alumina Nanofluids. Heat Transf Eng. 2023;(just-accepted):1–37.

  24. Oudah SK, Fang R, Tikadar A, Salman AS, Khan JA. An experimental investigation of the effect of multiple inlet restrictors on the heat transfer and pressure drop in a flow boiling microchannel heat sink. Int J Heat Mass Transf. 2020;153: 119582.

    Article  Google Scholar 

  25. Khodakarami S, Zhao H, Rabbi KF, Miljkovic N. Scalable corrosion-resistant coatings for thermal applications. ACS Appl Mater Interfaces. 2021;13:4519–34.

    Article  CAS  PubMed  Google Scholar 

  26. Sarwar MS, Jeong YH, Chang SH. Subcooled flow boiling CHF enhancement with porous surface coatings. Int J Heat Mass Transf. 2007;50:3649–57.

    Article  CAS  Google Scholar 

  27. Deb S, Das M, Das DC, Pal S, Das AK, Das R. Significance of surface modification on nucleate pool boiling heat transfer characteristics of refrigerant R-141b. Int J Heat Mass Transf. 2021;170:120994.

    Article  CAS  Google Scholar 

  28. Ma J, Cahill DG, Miljkovic N. Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films. Nano Lett. 2020;20:3918–24.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Chu K-H, Soo Joung Y, Enright R, Buie CR, Wang EN. Hierarchically structured surfaces for boiling critical heat flux enhancement. Appl Phys Lett. 2013;102:151602.

    Article  ADS  Google Scholar 

  30. Gupta SK, Misra RD. Flow boiling heat transfer performance of copper-alumina micro-nanostructured surfaces developed by forced convection electrodeposition technique. Chem Eng Process. 2021;164:108408.

    Article  CAS  Google Scholar 

  31. Gupta SK, Misra RD. An experimental investigation on flow boiling heat transfer enhancement using Cu-TiO2 nanocomposite coating on copper substrate. Exp Therm Fluid Sci. 2018;98:406–19.

    Article  CAS  Google Scholar 

  32. Holman JP. Experimental Methods for Engineers. 7th ed. Tata McGraw Hill Education Private Limited; 2007.

    Google Scholar 

  33. Kim YH, Lee KJ, Han D. Pool boiling enhancement with surface treatments. Heat Mass Transf. 2008;45:55–60.

    Article  ADS  CAS  Google Scholar 

  34. Jones BJ, McHale JP, Garimella SV. The influence of surface roughness on nucleate pool boiling heat transfer. J Heat Transf. 2009;131:1–14.

    Article  Google Scholar 

  35. Pioro IL, Rohsenow W, Doerffer SS. Nucleate pool boiling heat transfer I: review of parametric effects of boiling surface. Int J Heat Mass Transf. 2004;47:5033–44.

    Article  CAS  Google Scholar 

  36. Gorenflo D, Chandra U, Kottoff S, Luke A. Influence of thermophysical properties on pool boiling of refrigerants. Int J Ref. 2004;27:492–502.

    Article  CAS  Google Scholar 

  37. Hsu Y. On the size range of active nucleation cavities on a heating surface. J Heat Transf. 1962;84:207.

    Article  CAS  Google Scholar 

  38. Sajjad U, Sadeghianjahromi A, Ali HM, Wang C-C. Enhanced pool boiling of dielectric and highly wetting liquids-a review on enhancement mechanisms. Int Commun Heat Mass Transf. 2020;119: 104950.

    Article  CAS  Google Scholar 

  39. Thorncroft G, Klausner J, Mei R. Suppression of flow boiling nucleation. J Heat Transf. 1997;119:517.

    Article  CAS  Google Scholar 

  40. Liang G, Mudawar I. Review of nanoscale boiling enhancement techniques and proposed systematic testing strategy to ensure cooling reliability and repeatability. Appl Therm Eng. 2020;184: 115982.

    Article  Google Scholar 

  41. Gupta SK, Misra RD. An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nano-composite coating. Exp Heat Transf. 2019;32:133–58.

    Article  ADS  CAS  Google Scholar 

  42. Jo H, Ahn HS, Kang S, Kim MH. A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int J Heat Mass Transf. 2011;54:5643–52.

    Article  CAS  Google Scholar 

  43. Sujith Kumar CS, Suresh S, Yang Q, Aneesh CR. An experimental investigation on flow boiling heat transfer enhancement using spray pyrolysed alumina porous coatings. Appl Therm Eng. 2014;71:508–18.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to NIT, Silchar, India for financial support.

Funding

No funding used for this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have equal contribution in this work.

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Consent for publication

This paper has not been submitted or published to another journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Misra, R.D. Role of ZnO-nano-thin-film-layered micro/nanostructured surfaces on flow boiling heat transfer characteristics. J Therm Anal Calorim 149, 1267–1281 (2024). https://doi.org/10.1007/s10973-023-12766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12766-1

Keywords

Navigation