Skip to main content
Log in

Effect of pulse width on the accuracy of thermal diffusivity of graphite films with high thermal conductivity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Graphite films are frequently used in the thermal interface materials (TIM) of thermal dissipation due to its high thermal conductivity. However, accurately measuring the thermal diffusivity of graphite films requires careful consideration of key parameters. In this study, four typical graphite films were analyzed to identify these parameters. The results revealed that pulse width was the most important parameter in accurately measuring thermal diffusivity. Specifically, when the pulse width was less than 1.8% of the half-heating time, thermal diffusivity measurements were more accurate. Conversely, when the pulse width exceeded 1.8% of the half-heating time, heating curves were affected, resulting in a gradual decrease in thermal diffusivity. Additionally, pulse voltage had little effect on thermal diffusivity measurements. These findings provide important guidance for accurately characterizing the thermal properties of graphite films and can inform the accurate measurement and development of efficient thermal interface materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bi JC, Yun H, Cho M, Kwak MG, Ju BK, Kim Y. Thermal conductivity and mechanical durability of graphene composite films containing polymer-filled connected multilayer graphene patterns. Ceram Int. 2022;48(12):17789–95.

    CAS  Google Scholar 

  2. Chen F, Yu P, Mao L, Wang J. Simple large-scale method of recycled graphene films vertical arrangement for superhigh through-plane thermal conductivity of epoxy composites. Compos Sci Technol. 2021;215:109026.

    CAS  Google Scholar 

  3. Dai W, Ma T, Yan Q, Gao J, Tan X, Lv L, Hou H, Wei Q, Yu J, Wu J, Yao Y, Du S, Sun R, Jiang N, Wang Y, Kong J, Wong C, Maruyama S, Lin CT. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 2019;13(10):11561–610.

    CAS  PubMed  Google Scholar 

  4. Gao J, Zobeiri H, Lin H, Xie D, Yue Y, Wang X. Coherency between thermal and electrical transport of partly reduced graphene paper. Carbon. 2021;178:92–10.

    CAS  Google Scholar 

  5. Goli P, Ning H, Li X, Lu CY, Novoselov KS, Balandin AA. Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett. 2014;14(3):1497–520.

    ADS  CAS  PubMed  Google Scholar 

  6. Akoshima M, Hay B, Zhang J, Chapman L, Baba T. International comparison on thermal-diffusivity measurements for iron and isotropic graphite using the laser flash method in CCT-WG9. Int J Thermophys. 2013;34(5):763–814.

    ADS  CAS  Google Scholar 

  7. Chen YH, Jiang LM, Fang Y, Shu L, Zhang YX, Xie T, Li KY, Tan N, Zhu L, Cao Z, Zeng JL. Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material. Sol Energy Mater Sol Cells. 2019;200: 109989.

    CAS  Google Scholar 

  8. Goli P, Ning H, Li X, Lu CY, Novoselov KS, Balandin AA. Thermal properties of graphene–copper–graphene heterogeneous films. Nano Lett. 2014;14(3):1497–506.

    ADS  CAS  PubMed  Google Scholar 

  9. Hansson J, Nilsson TMJ, Ye L, Liu J. Novel nanostructured thermal interface materials: a review. Int Mater Rev. 2017;63(1):22–3.

    Google Scholar 

  10. Hou ZL, Song WL, Wang P, Meziani MJ, Kong CY, Anderson A, Maimaiti H, LeCroy GE, Qian H, Sun YP. Flexible graphene–graphene composites of superior thermal and electrical transport properties. ACS Appl Mater Interfaces. 2014;6(17):15026–36.

    CAS  PubMed  Google Scholar 

  11. Tavman IH, Turgut A, Da FHM, Orlande HRB, Cotta RM, Magalhaes M. Thermal-diffusivity measurements of conductive composites based on EVA copolymer filled with expanded and unexpanded graphite. Int J Thermophys. 2013;34(12):2297–8.

    ADS  CAS  Google Scholar 

  12. Hua S, Yang L, Gao T, Jiang P, Jiang F, Liu Y. Graphene quantum dots induce autophagy and reveal protection against hydrogen peroxide-induced oxidative stress injury. ACS Appl Bio Mater. 2019;2(12):5760–8.

    CAS  PubMed  Google Scholar 

  13. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–5.

    ADS  CAS  PubMed  Google Scholar 

  14. Wang F, Wang B, Zhang Y, Zhao F, Qiu Z, Zhou L, Chen S, Shi M, Huang Z. Enhanced thermal and mechanical properties of carbon fiber/epoxy composites interleaved with graphene/SiCnw nanostructured films. Compos A. 2022;162: 107129.

    CAS  Google Scholar 

  15. Wei KX, Jia FL, Wei W, Zhou HR, Chu FQ, Du QB, Alexandrov IV, Hu J. Flexible nanotwinned graphene/copper composites as thermal management materials. ACS Appl Nano Mater. 2020;3(5):4810–7.

    CAS  Google Scholar 

  16. Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N, Borca-Tasciuc T, Lian J. Large-area freestanding graphene paper for superior thermal management. Adv Mater. 2014;26(26):4521–6.

    CAS  PubMed  Google Scholar 

  17. Meng F, Peng M, Chen Y, Cai X, Huang F, Yang L, Liu X, Li T, Wen X, Wang N, Xiao D, Jiang H, Xia L, Liu H, Ma D. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl Catal B. 2022;301: 120826.

    CAS  Google Scholar 

  18. Jia H, Liang LL, Liu D, Wang Z, Liu Z, Xie LJ, Tao ZC, Kong QQ, Chen CM. A review of three-dimensional graphene networks for thermal management and electromagnetic protection. New Carbon Mater. 2021;36(5):851–17.

    CAS  Google Scholar 

  19. Kargar F, Barani Z, Salgado R, Debnath B, Lewis JS, Aytan E, Lake RK, Balandin AA. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Interfaces. 2018;10(43):37555–610.

    CAS  PubMed  Google Scholar 

  20. Kumar P, Shahzad F, Yu S, Hong SM, Kim YH, Koo CM. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon. 2015;94:494–50.

    CAS  Google Scholar 

  21. Kitaoka S, Wada M, Nagai T, Osa N, Konno T. Increasing the thermal diffusivity of flexible graphite sheets by superheated steam treatment. J Mater Sci. 2011;46(4):1132–3.

    ADS  CAS  Google Scholar 

  22. Oliva J, Mtz-Enriquez AI, Oliva AI, Ochoa-Valiente R, Garcia CR, Pei Q. Flexible graphene composites with high thermal conductivity as efficient heat sinks in high-power LEDs. J Phys D Appl Phys. 2019;52(2):87–94.

    Google Scholar 

  23. Renteria J, Nika D, Balandin A. Graphene thermal properties: applications in thermal management and energy storage. Appl Sci. 2014;4(4):525–622.

    Google Scholar 

  24. Shahil KM, Balandin AA. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;12(2):861–7.

    ADS  CAS  PubMed  Google Scholar 

  25. Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater. 2014;24(28):4542–6.

    CAS  Google Scholar 

  26. Manta A, Gresil M, Soutis C. Transient conduction for thermal diffusivity simulation of a graphene/polymer and its full-field validation with image reconstruction. Compos Struct. 2021;256: 113141.

    CAS  Google Scholar 

  27. Meng X, Pan H, Zhu C, Chen Z, Lu T, Xu D, Li Y, Zhu S. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions. ACS Appl Mater Interfaces. 2018;10(26):22611–711.

    CAS  PubMed  Google Scholar 

  28. Tan N, Xie T, Feng Y, Hu P, Li Q, Jiang LM, Zeng WB, Zeng JL. Preparation and characterization of erythritol/Sepiolite/exfoliated graphite nanoplatelets form-stable phase change material with high thermal conductivity and suppressed supercooling. Sol Energy Mater Sol Cells. 2020;217: 110726.

    CAS  Google Scholar 

  29. Yang L, Guo Y, Long J, Xia L, Li D, Xiao J, Liu H. PdZn alloy nanoparticles encapsulated within a few layers of graphene for efficient semi-hydrogenation of acetylene. ChemComm Communication. 2019;55(97):14693–703.

    CAS  Google Scholar 

  30. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010;10(5):1645–51.

    ADS  CAS  PubMed  Google Scholar 

  31. Pettes MT, Jo I, Yao Z, Shi L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 2011;11(3):1195–220.

    ADS  CAS  PubMed  Google Scholar 

  32. Xu X, Pereira LF, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh BC, Xie R, Thong JT, Hong BH, Loh KP, Donadio D, Li B, Ozyilmaz B. Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun. 2014;5:3689.

    ADS  CAS  PubMed  Google Scholar 

  33. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L. Two-dimensional phonon transport in supported graphene. Science. 2010;328:213–6.

    ADS  CAS  PubMed  Google Scholar 

  34. Cahill DG. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum. 2004;75(12):5119–23.

    ADS  CAS  Google Scholar 

  35. Zhang H, Chen X, Jho YD, Minnich AJ. Temperature-dependent mean free path spectra of thermal phonons along the c-axis of graphite. Nano Lett. 2016;16(3):1643–9.

    ADS  PubMed  Google Scholar 

  36. Feser JP, Cahill DG. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots. Rev Sci Instrum. 2012;83(10): 104901.

    ADS  PubMed  Google Scholar 

  37. Rodin D, Yee SK. Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rev Sci Instrum. 2017;88(1): 014902.

    ADS  PubMed  Google Scholar 

  38. Li X, Tan C, Jiang J, Wang S, Zheng F, Zhang X, Wang H, Huang Y, Li Q. New construction of electron thermal conductive route for high-efficient heat dissipation of graphene/Cu composite. Carbon. 2021;177:107–14.

    CAS  Google Scholar 

  39. Li Y, Liao X, Guo X, Cheng S, Huang R, Zhou Y, Cai W, Zhang Y, Zhang XA. Improving thermal conductivity of epoxy-based composites by diamond-graphene binary fillers. Diamond Relat Mater. 2022;126: 109141.

    ADS  CAS  Google Scholar 

  40. Lin CX, Tang WR, Tseng LT, Valinton JAA, Tsai CH, Kurniawan A, Chiou K, Chen CH. Enhanced thermal conducting behavior of pressurized graphene-silver flake composites. Langmuir. 2022;38(2):727–37.

    CAS  PubMed  Google Scholar 

  41. Blumm J, Lemarchand S. Influence of test conditions on the accuracy of laser flash measurements. High Temp High Press. 2002;34(5):523–5.

    CAS  Google Scholar 

  42. Sudhindra S, Rashvand F, Wright D, Barani Z, Drozdov AD, Baraghani S, Backes C, Kargar F, Balandin AA. Specifics of thermal transport in graphene composites: effect of lateral dimensions of graphene fillers. ACS Appl Mater Interfaces. 2021;13(44):53073–5.

    CAS  PubMed  Google Scholar 

  43. Agarwal T. Influence of measurement parameters of laser flash analysis on the observed thermal diffusivity and the choice of parameters to get repeatable measurements. J Therm Anal Calorim. 2018;134(2):1183–220.

    CAS  Google Scholar 

  44. Sun P, Liu B, You Z, Zheng Y, Wang Z. Graphene/copper nanoparticles as thermal interface materials. ACS Appl Nano Mater. 2022;5(3):3450–7.

    CAS  Google Scholar 

  45. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity heat capacity and thermal conductivity. J Appl Phys. 1961;32(9):1679–85.

    ADS  CAS  Google Scholar 

  46. Lechner T, Hahne E. Finite pulse time effects in flash diffusivity measurements. Thermochim Acta. 1993;218:341–9.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52271205, 51971068, U20A20237, 52371218 and 51871065), Independent Research Foundation of Guangxi Key Laboratory of Information Materials (Grant No. 211017-K), Development Program of Guangxi (AA19182014, AD17195073, AA17202030-1), Guangxi key research and development program (2021AB17045), Science Research and Technology Development Project of Guilin (20210216-1, 20210102-4), Guangxi Bagui Scholar Foundation, Guilin Lijiang Scholar Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Yingjie Zhang and Zihan Wang helped in conceptualization and writing; Gang Zhu and Yue Liu were involved in methodology; Guanghui He and Lixian Sun supervised the study; and Chao Li and Bin Chen contributed to review and editing.

Corresponding author

Correspondence to Guanghui He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Z., Liu, Y. et al. Effect of pulse width on the accuracy of thermal diffusivity of graphite films with high thermal conductivity. J Therm Anal Calorim 149, 1029–1036 (2024). https://doi.org/10.1007/s10973-023-12762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12762-5

Keywords

Navigation