Skip to main content
Log in

Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The primary objective of this article is on examining the impacts of mixed convection flow of Carreau fluid past a permeable stretched surface with Soret and Dufour effects occurring. For the flow analysis, the Darcy–Forchheimer porosity medium is taken into account. In order to explore the transference analysis of heat and mass rate, the impressions of thermal radiation, viscous dissipation, heat generation, Arrhenius activation energy, convective heat, and mass conditions impacts are taken into consideration. The flow equations initially exist as PDEs, and we then employ appropriate similarity transformations to change them into ODEs. The R–K 4th order strategy based on the shooting approach is used to numerically solve these ODEs. Through various emergent variables, the numerical results for the velocity, temperature, and concentration fields are shown. For a variety of distinct variables, the physical quantities such as friction factor, local Nusselt number, and local Sherwood numbers are shown. It is noted that the velocity field is reduced by the magnetic field, but the Weissenberg number buoyancy ratio parameter exhibits the opposite tendency. Further, it is noticed that temperature and concentration distributions have an improving tendency for the Soret and Dufour parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

\(u, v\) :

Velocity components (m s1)

\({\text{Sr}}\) :

Soret number

\(n\) :

Power law index

\(T\) :

Fluid temperature (K)

\(\theta_{{\text{w}}}\) :

Temperature ratio parameter

\(\nu_{{\text{f}}}\) :

Kinematic viscosity (m2 s1)

\(E\) :

Activation energy

\(T_{{\text{w}}}\) :

Surface temperature (K)

\(g\) :

Acceleration due to gravity

\(\gamma\) :

Velocity slip parameter

\(\sigma_{{\text{f}}}\) :

Electric conductivity

\({\text{Gr}}_{{\text{C}}}\) :

Solutal Grashof number

\(k_{{\text{f}}}\) :

Thermal conductivity (W m1 K1)

\(C\) :

Fluid concentration

\(C_{{\text{p}}}\) :

Specific heat

\({\text{Sc}}\) :

Schmidt number

\(T_{\infty }\) :

Ambient temperature (K)

\(\beta i_{{\text{C}}}\) :

Mass Biot number

\({\text{Sh}}_{{\text{x}}}\) :

Local Sherwood number

\(C_{\infty }\) :

Ambient concentration

\({\text{We}}^{2}\) :

Weissenberg number

\({\text{Pr}}\) :

Prandtl number

\(\phi\) :

Dimensionless concentricity

\(C_{{\text{f}}}\) :

Skin friction coefficient

\({\text{Fr}}\) :

Darcy–Forchheimer

\(x,y\) :

Cartesian coordinates (m)

\({\text{Re}}\) :

Local Reynolds number

\(\eta\) :

Dimensionless similarity variable

\(M\) :

Hartman field

\(\rho_{{\text{f}}}\) :

Fluid density (kg m3)

\({\text{Ec}}\) :

Ecker number

\(\mu_{{\text{f}}}\) :

Dynamic viscosity (kg m2 s1)

\({\Gamma }\) :

Chemical reaction parameter

\(Q\) :

Heat sink parameter

\(\theta\) :

Dimensionless temperature

\({\text{Nu}}\) :

Local Nusselt number

\({\text{Gr}}_{{\text{T}}}\) :

Thermal Grashof number

\({\text{Nr}}\) :

Radiation parameter

\(C_{{\text{w}}}\) :

Surface volume friction

\({\text{Du}}\) :

Dufour number

\(u_{{\text{w}}}\) :

Stretching velocity (m s1)

\(\beta i_{{\text{T}}}\) :

Thermal Biot number

References

  1. Wang S, Tan W. Stability analysis of Soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int J Heat Fluid Flow. 2011;32(1):88–94. https://doi.org/10.1016/j.ijheatfluidflow.2010.10.005.

    Article  Google Scholar 

  2. Yin J, Zhang X, Rehman MI, Hamid A. Thermal radiation aspect of bioconvection flow of magnetized Sisko nanofluid along a stretching cylinder with swimming microorganisms. Case Stud Therm Eng. 2022;1(30):101771. https://doi.org/10.1016/j.csite.2022.101771.

    Article  Google Scholar 

  3. Zhang X, Yang D, Rehman MI, Mousa AA, Hamid A. Numerical simulation of bioconvection radiative flow of Williamson nanofluid past a vertical stretching cylinder with activation energy and swimming microorganisms. Case Stud Therm Eng. 2022;1(33):101977. https://doi.org/10.1016/j.csite.2022.101977.

    Article  Google Scholar 

  4. Rehman MI, Chen H, Jamshed W, Eid MR, Guedri K, El Din SM. Thermal radiative flux and energy of Arrhenius evaluation on stagnating point flowing of Carreau nanofluid: a thermal case study. Case Stud Therm Eng. 2022;1(40):102583. https://doi.org/10.1016/j.csite.2022.102583.

    Article  Google Scholar 

  5. Gayatri M, Jayarami Reddy K, Jayachandra BM. Slip flow of Carreau fluid over a slendering stretching sheet with viscous dissipation and Joule heating. SN Appl Sci. 2020;2:1–1. https://doi.org/10.1007/s42452-020-2262-x.

    Article  CAS  Google Scholar 

  6. Ali U, Alqahtani AS, Rehman KU, Malik MY. On Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat generation effects in a Carreau nano-fluid over a stretching sheet. Rev Mex Fis. 2019;65(5):479–88. https://doi.org/10.31349/revmexfis.65.479.

    Article  Google Scholar 

  7. Ghobadi AH, Hassankolaei MG. Numerical treatment of magneto Carreau nanofluid over a stretching sheet considering Joule heating impact and nonlinear thermal ray. Heat Transf Asian Res. 2019;48(8):4133–51. https://doi.org/10.1002/htj.21585.

    Article  Google Scholar 

  8. Qayyum M, Abbas T, Afzal S, Saeed ST, Akgül A, Inc M, Mahmoud KH, Alsubaie AS. Heat transfer analysis of unsteady MHD carreau fluid flow over a stretching/shrinking sheet. Coatings. 2022;12(11):1661. https://doi.org/10.3390/coatings12111661.

    Article  CAS  Google Scholar 

  9. Alrehili M. Improvement for engineering applications through a dissipative Carreau nanofluid fluid flow due to a nonlinearly stretching sheet with thermal radiation. Case Stud Therm Eng. 2023;1(42):102768. https://doi.org/10.1016/j.csite.2023.102768.

    Article  Google Scholar 

  10. Tawade JV, Guled CN, Noeiaghdam S, Fernandez-Gamiz U, Govindan V, Balamuralitharan S. Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet. Results Eng. 2022;1(15):100448. https://doi.org/10.1016/j.rineng.2022.100448.

    Article  CAS  Google Scholar 

  11. Thirupathi G, Govardhan K, Narender G. MHD stagnation point flow of Carreau nanofluid over a radially stretching sheet. Int J Nonlinear Anal Appl. 2023;14(1):1093–109.

    Google Scholar 

  12. Nithyadevi N, Yang RJ. Double diffusive natural convection in a partially heated enclosure with Soret and Dufour effects. Int J Heat Fluid Flow. 2009;30(5):902–10. https://doi.org/10.1016/j.ijheatfluidflow.2009.04.001.

    Article  CAS  Google Scholar 

  13. Gharami PP, Gazi MA, Ananna SN, Ahmmed SF. Numerical exploration of MHD unsteady flow of THNF passing through a moving cylinder with Soret and Dufour effects. Partial Differ Equ Appl. 2022;1(6):100463. https://doi.org/10.1016/j.padiff.2022.100463.

    Article  Google Scholar 

  14. Bilal Ashraf M, Hayat T, Shehzad SA, Ahmed B. Thermophoresis and MHD mixed convection three-dimensional flow of viscoelastic fluid with Soret and Dufour effects. Neural Comput Appl. 2019;18(31):249–61. https://doi.org/10.1007/s00521-017-2997-5.

    Article  Google Scholar 

  15. Venkata Ramudu AC, Anantha Kumar K, Sugunamma V, Sandeep N. Impact of Soret and Dufour on MHD Casson fluid flow past a stretching surface with convective–diffusive conditions. J Therm Anal Calorim. 2022;1:1–1. https://doi.org/10.1007/s10973-021-10569-w.

    Article  CAS  Google Scholar 

  16. Ramadevi B, Anantha Kumar K, Sugunamma V, Ramana Reddy JV, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Therm Anal Calorim. 2020;139:1379–93. https://doi.org/10.1007/s10973-019-08477-1.

    Article  CAS  Google Scholar 

  17. Rehman MI, Chen H, Hamid A, Guedri K, Abdeljawad T, Yang D. Theoretical investigation of Darcy–Forchheimer flow of bioconvection Casson fluid in the presence of chemical reaction effect. Biomass Convers Biorefin. 2022;27:1–1. https://doi.org/10.1007/s13399-022-03060-5.

    Article  CAS  Google Scholar 

  18. Iftikhar N, Rehman A, Sadaf H. Theoretical investigation for convective heat transfer on Cu/water nanofluid and (SiO2-copper)/water hybrid nanofluid with MHD and nanoparticle shape effects comprising relaxation and contraction phenomenon. Int Commun Heat Mass Transf. 2021;1(120):105012. https://doi.org/10.1016/j.icheatmasstransfer.2020.105012.

    Article  CAS  Google Scholar 

  19. Iftikhar N, Rehman A. Peristaltic flow of an Eyring Prandtl fluid in a diverging tube with heat and mass transfer. Int J Heat Mass Transf. 2017;1(111):667–76. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.013.

    Article  Google Scholar 

  20. Rehman MI, Chen H, Hamid A. Impact of bioconvection on Darcy–Forchheimer flow of MHD Carreau fluid with Arrhenius activation energy. Z Angew Math Mech. 2023. https://doi.org/10.1002/zamm.202300164.

    Article  Google Scholar 

  21. Iftikhar N, Rehman A, Sadaf H, Khan MN. Impact of wall properties on the peristaltic flow of Cu-water nano fluid in a non-uniform inclined tube. Int J Heat Mass Transf. 2018;1(125):772–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.098.

    Article  CAS  Google Scholar 

  22. Rehman MI, Chen H, Hamid A, Qi H. Numerical Analysis of unsteady Non-linear mixed convection flow of Reiner–Philippoff nanofluid along Falkner–Skan wedge with new mass flux condition. Chem Phys Lett. 2023;1(830):140799. https://doi.org/10.1016/j.cplett.2023.140799.

    Article  CAS  Google Scholar 

  23. Sadaf H, Asghar Z, Iftikhar N. Cilia-driven flow analysis of cross fluid model in a horizontal channel. Comput Part Mech. 2023;10(4):943–50. https://doi.org/10.1007/s40571-022-00539-w.

    Article  Google Scholar 

  24. Eid MR. Thermal characteristics of 3D nanofluid flow over a convectively heated Riga surface in a Darcy–Forchheimer porous material with linear thermal radiation: an optimal analysis. Arab J Sci Eng. 2020;45(11):9803–14. https://doi.org/10.1007/s13369-020-04943-3.

    Article  CAS  Google Scholar 

  25. Bilal M, Ramzan M. Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy–Forchheimer porous media. J Therm Anal Calorim. 2019;138:3127–37. https://doi.org/10.1007/s10973-019-08324-3.

    Article  CAS  Google Scholar 

  26. Nadeem S, Ijaz M, Ayub M. Darcy–Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink. J Therm Anal Calorim. 2021;143:2313–28. https://doi.org/10.1007/s10973-020-09737-1.

    Article  CAS  Google Scholar 

  27. Sadaf H, Iftikhar N, Sher AN. Physiological fluid flow analysis by means of contraction and expansion with addition of hybrid nanoparticles. Eur Phys J Plus. 2019;134:1–2. https://doi.org/10.1140/epjp/i2019-12598-9.

    Article  Google Scholar 

  28. Rehman MI, Chen H, Hamid A, Qayyum S, Jamshed W, Raizah Z, Eid MR, Din ES. Soret and Dufour influences on forced convection of Cross radiative nanofluid flowing via a thin movable needle. Sci Rep. 2022;12(1):18666. https://doi.org/10.1038/s41598-022-23563-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iftikhar N, Rehman A, Sadaf H, Iqbal S. Study of Al2O3/copper–water nanoparticle shape, slip effects, and heat transfer on steady physiological delivery of MHD hybrid nanofluid. Can J Phys. 2019;97(12):1239–52. https://doi.org/10.1139/cjp-2018-0551.

    Article  CAS  Google Scholar 

  30. Zhang X, Yang D, Israr Ur Rehman M, Hamid A. Heat transport phenomena for the Darcy–Forchheimer flow of Casson fluid over stretching sheets with electro-osmosis forces and Newtonian heating. Mathematics. 2021;9(19):2525. https://doi.org/10.3390/math9192525.

    Article  Google Scholar 

  31. Iftikhar N, Rehman A, Sadaf H. Inspection of physiological flow in the presence of nanoparticles with MHD and slip effects. J Therm Anal Calorim. 2022;147(1):987–97. https://doi.org/10.1007/s10973-020-10337-2.

    Article  CAS  Google Scholar 

  32. Rehman MI, Chen H, Hamid A, Jamshed W, Eid MR, El Din SM, Khalifa HA, Abd-Elmonem A. Effect of Cattaneo-Christov heat flux case on Darcy–Forchheimer flowing of Sutterby nanofluid with chemical reactive and thermal radiative impacts. Case Stud Therm Eng. 2023;1(42):102737. https://doi.org/10.1016/j.csite.2023.102737.

    Article  Google Scholar 

  33. Iftikhar N, Sadaf H. Mathematical modelling of modified hybrid nanofluid in a peristaltic diverging tube with MHD and convective boundary conditions. Comput Part Mech. 2023;29:1–5. https://doi.org/10.1007/s40571-023-00553-6.

    Article  Google Scholar 

  34. Reddy JR, Kumar KA, Sugunamma V, Sandeep N. Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: a comparative study. Alex Eng J. 2018;57(3):1829–38. https://doi.org/10.1016/j.aej.2017.03.008.

    Article  Google Scholar 

  35. Makinde OD, Mabood F, Khan WA, Tshehla MS. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. J Mol Liq. 2016;1(219):624–30. https://doi.org/10.1016/j.molliq.2016.03.078.

    Article  CAS  Google Scholar 

  36. Khan M, Hashim H. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv. 2015. https://doi.org/10.1063/1.4932627.

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

MIUR contributed to literature consultation; AH contributed to manuscript preparation; and HC was involved in investigation and methodology.

Corresponding author

Correspondence to M. Israr Ur Rehman.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Not applicable.

International review board statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur Rehman, M.I., Chen, H. & Hamid, A. Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena. J Therm Anal Calorim 148, 13883–13894 (2023). https://doi.org/10.1007/s10973-023-12699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12699-9

Keywords

Navigation