Skip to main content
Log in

Thermodynamic study on expanded graphite-based multifunctional composite phase change materials for personal thermal management and medical protection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The low thermal conductivity and liquid-phase leakage of phase change materials seriously hinder their large-scale applications. Porous materials have been identified as an effective way to address the leakage and provide a thermally conductive network. Therefore, we designed an expanded graphite-based multifunctional composite phase change thermal storage materials for personal thermal management and antimicrobial in medical protection. Expanded graphite (EG) was used as the matrix, silver nanowires (Ag NWs) as the functional enhancement materials, and n-octadecane (OD) as the thermal storage materials. OD and Ag NWs were adsorbed in the porous structure of EG by vacuum-assisted impregnation. Finally, EG/Ag NWs/OD were combined with non-woven fabrics (N) by one-step hot pressing method to obtain EG/Ag NWs/OD-N composite with excellent comprehensive performance. With the mass ratio of EG to Ag NWs of 13:7, EG/Ag NWs/OD-N exhibited a thermal conductivity of 2.0130 W m−1 K−1, which was improved by 1070.3% compared with pure OD. EG/Ag NWs/OD-N has a melting enthalpy of 137.85 J·g−1 and a crystallization enthalpy of 128.97 J·g−1. In addition, EG/Ag NWs/OD-N display great antibacterial properties, thermal cycling stability, shape stability, and cycling persistence and showed excellent temperature control in protective clothing applications, offering great potential for large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Yu MH, Fang GH, Meng KK, Sun PB, Zhao MS. Paraffin/modified exfoliated graphite composite phase change materials with high performance and stability for thermal energy storage. J Therm Anal Calorim. 2022;148:675–87.

    Article  Google Scholar 

  2. Zhou WB, Li K, Zhu JQ, Li RG, Cheng XM, Liu FL. Preparation and thermal cycling of expanded graphite/adipic acid composite phase change materials. J Therm Anal Calorim. 2017;129:1639–45.

    Article  CAS  Google Scholar 

  3. Gong S, Li XL, Sheng MJ, Liu S, Zheng YF, Wu H, Lu X, Qu JP. High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery. ACS Appl Mater Interfaces. 2021;13:47174–84.

    Article  CAS  PubMed  Google Scholar 

  4. Li WW, Wang F, Cheng WL, Chen X, Zhao Q. Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device. Energy Convers Manag. 2020;210:112680.

    Article  CAS  Google Scholar 

  5. Wu WX, Liu JZ, Liu M, Rao ZH, Deng H, Wang Q, Qi X, Wang SF. An innovative battery thermal management with thermally induced flexible phase change material. Energy Convers Manag. 2020;221:113145.

    Article  Google Scholar 

  6. Arshad A, Jabbal M, Faraji H, Talebizadehsardari P, Bashir MA, Yan YY. Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics. J Energy Storage. 2022;48:103882.

    Article  Google Scholar 

  7. Liu YN, Wang NN, Ding YF. Preparation and properties of composite phase change material based on solar heat storage system. J Energy Storage. 2021;40:102805.

    Article  Google Scholar 

  8. Imran Khan M, Asfand F, Al-Ghamdi SG. Progress in research and development of phase change materials for thermal energy storage in concentrated solar power. Appl Therm Eng. 2023;219:119546.

    Article  CAS  Google Scholar 

  9. Solangi NH, Mubarak NM, Karri RR, Mazari SA, Jatoi AS, Koduru JR, Dehghani MH. MXene-based phase change materials for solar thermal energy storage. Energy Convers Manag. 2022;273:116432.

    Article  CAS  Google Scholar 

  10. Zhou DY, Yuan JW, Xiao XH, Liu YC, Rather S-U. Preparation and characterization of lauric-myristic acid/expanded graphite as composite phase change energy storage material. J Nanomater. 2021;2021:1–11.

    Article  Google Scholar 

  11. Ma KL, Zhang XL, Ji J, Han L, Ding XJ, Xie WH. Application and research progress of phase change materials in biomedical field. Biomater Sci. 2021;9:5762–80.

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Tang ZD, Liu PP, Gao HY, Chang YQ, Wang G. Smart utilization of multifunctional metal oxides in phase change materials. Matter. 2020;3:708–41.

    Article  Google Scholar 

  13. Wu MQ, Li TX, He QF, Du RX, Wang RZ. Thermally conductive and form-stable phase change composite for building thermal management. Energy. 2022;239:121938.

    Article  CAS  Google Scholar 

  14. Wang F, Pang DQ, Liu XF, Liu MW, Du WF, Zhang YC, Cheng XQ. Progress in application of phase-change materials to cooling clothing. J Energy Storage. 2023;60:106606.

    Article  Google Scholar 

  15. Su Y, Fan YW, Ma YL, Wang YY, Liu GJ. Flame-retardant phase change material (PCM) for thermal protective application in firefighting protective clothing. Int J Therm Sci. 2023;185:108075.

    Article  CAS  Google Scholar 

  16. Prajapati DG, Kandasubramanian B. A review on polymeric-based phase change material for thermo-regulating fabric application. Polym Rev. 2019;60:389–419.

    Article  Google Scholar 

  17. Zhao YX, Zhang XL, Hua WS. Review of preparation technologies of organic composite phase change materials in energy storage. J Mol Liq. 2021;336:115923.

    Article  CAS  Google Scholar 

  18. Tao JL, Luan JD, Liu Y, Qu DY, Yan Z, Ke X. Technology development and application prospects of organic-based phase change materials: an overview. Renew Sustain Energ Rev. 2022;159:112175.

    Article  CAS  Google Scholar 

  19. Mert HH, Simsek EB, Balta Z, Mert MS. Hexagonal boron nitride-loaded macroporous foams as frameworks for development of n-eicosane-based composite phase-change materials. J Therm Anal Calorim. 2023;148:5943–56.

    Article  CAS  Google Scholar 

  20. Fang M, Zhou JD, Fei H, Yang K, He RQ. Porous-material-based composite phase change materials for a lithium-ion battery thermal management system. Energy Fuels. 2022;36:4153–73.

    Article  CAS  Google Scholar 

  21. Gao L, Sun XG, Sun BZ, Che DY, Li SH, Liu ZZ. Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage. J Therm Anal Calorim. 2019;141:25–35.

    Article  Google Scholar 

  22. Ren SJ, Li JH, Zhang BF, Huang KY, Bai YB. Preparation of a composite phase change material with high thermal storage capacity using modified expanded graphite as the matrix. Diam Relat Mater. 2022;121:108736.

    Article  Google Scholar 

  23. Li M, Guo QG, Su YL. The thermal conductivity improvements of phase change materials using modified carbon nanotubes. Diam Relat Mater. 2022;125:109023.

    Article  CAS  Google Scholar 

  24. Zhang Y, Wang JS, Qiu JJ, Jin X, Umair MM, Lu RW, Zhang SF, Tang BT. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy. 2019;237:83–90.

    Article  CAS  Google Scholar 

  25. Hu ZC, Zou YJ, Xiang CL, Sun LX, Xu F, Jiang MH, Yu SS. Stabilized multifunctional phase change materials based on carbonized Cu-coated melamine foam/reduced graphene oxide framework for multiple energy conversion and storage. Carbon Energy. 2022;4:1214–27.

    Article  CAS  Google Scholar 

  26. Chen X, Cheng P, Tang ZD, Xu XL, Gao HY, Wang G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv Sci. 2021;8:2001274.

    Article  CAS  Google Scholar 

  27. Lin YX, Zhu CQ, Alva G, Fang GY. Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage. Appl Energy. 2018;228:1801–9.

    Article  CAS  Google Scholar 

  28. Wang TY, Wang SF, Wu W. Experimental study on effective thermal conductivity of microcapsules based phase change composites. Int J Heat Mass Transf. 2017;109:930–7.

    Article  CAS  Google Scholar 

  29. Yu XK, Tao YB. Improvement of thermal cycle stability of paraffin/expanded graphite composite phase change materials and its application in thermal management. J Energy Storage. 2023;63:107019.

    Article  Google Scholar 

  30. Zhang GH, Sun Y, Wu CX, Yan XY, Zhao WM, Peng CX. Low-cost and highly thermally conductive lauric acid–paraffin–expanded graphite multifunctional composite phase change materials for quenching thermal runaway of lithium-ion battery. Energy Rep. 2023;9:2538–47.

    Article  Google Scholar 

  31. Chriaa I, Karkri M, Trigui A, Jedidi I, Abdelmouleh M, Boudaya C. The performances of expanded graphite on the phase change materials composites for thermal energy storage. Polymer. 2021;212:123128.

    Article  CAS  Google Scholar 

  32. Jones R, Draheim R, Roldo M. Silver nanowires: synthesis, antibacterial activity and biomedical applications. Appl Sci. 2018;8(5):673.

    Article  Google Scholar 

  33. Lei J, Zhou L, Tang YJ, Luo Y, Duan T, Zhu WK. High-strength konjac glucomannan/silver nanowires composite films with antibacterial properties. Materials. 2017;10(5):524.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cui JH, Liu YL. Preparation of graphene oxide with silver nanowires to enhance antibacterial properties and cell compatibility. RSC Adv. 2015;5:85748–55.

    Article  CAS  Google Scholar 

  35. Nateghi MR, Shateri-Khalilabad M. Silver nanowire-functionalized cotton fabric. Carbohydr Polym. 2015;117:160–8.

    Article  CAS  PubMed  Google Scholar 

  36. Deng Y, Li JH, Qian TT, Guan WM, Li YL, Yin XP. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem Eng J. 2016;295:427–35.

    Article  CAS  Google Scholar 

  37. Yi H, Xia L, Song SX. Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage. Compos Sci Technol. 2022;217:109121.

    Article  CAS  Google Scholar 

  38. Li Y, Li X, Alam MM, Yu DB, Miao JB, Cao M, Chen P, Xia R, Wu B, Qian JS. Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management. ACS Appl Energy Mater. 2020;3:6061–70.

    CAS  Google Scholar 

  39. Lee JH, Lee P, Lee D, Lee SS, Ko SH. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des. 2012;12:5598–605.

    Article  Google Scholar 

  40. Prabukumar C, Bhat KU. Purification of silver nanowires synthesised by polyol method. Mater Today Proc. 2018;5:22487–93.

    Article  CAS  Google Scholar 

  41. Chen GN, Bi LL, Yang ZL, Chen LJ, Wang GX, Ye CH. Water-based purification of ultrathin silver nanowires toward transparent conductive films with a transmittance higher than 99%. ACS Appl Mater Interfaces. 2019;11:22648–54.

    Article  CAS  PubMed  Google Scholar 

  42. Xia YP, Cui WW, Zhang HZ, Zou YJ, Xiang CL, Chu HL, Qiu SJ, Xu F, Sun LX. Preparation and thermal performance of n-octadecane/expanded graphite composite phase-change materials for thermal management. J Therm Anal Calorim. 2017;131:81–8.

    Article  Google Scholar 

  43. Li Y, Zhao L, Wang H, Li BH. Synthesis of novel shape-stabilized phase change materials with high latent heat and low supercooling degree for thermal energy storage. J Mater Res. 2019;34:3263–70.

    Article  CAS  Google Scholar 

  44. Liu BT, Yan HQ, Chen SY, Guan YW, Wu GG, Jin R, Li L. Stable and controllable synthesis of silver nanowires for transparent conducting film. Nanoscale Res Lett. 2017;12:212.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li CE, Yu H, Song Y, Wang M, Liu ZY. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew Energy. 2020;145:1465–73.

    Article  CAS  Google Scholar 

  46. Wei J, Gao DM, Wang Y, Li XT, Guo YP, Yao Y. Extremely high thermal conductive cement-based composites with diamond/ZnO/expanded graphite thermal conductivity network for cooling road. Constr Build Mater. 2023;393:131968.

    Article  CAS  Google Scholar 

  47. Tarannum F, Danayat S, Nayal A, Muthaiah R, Annam RS, Garg J. Thermally expanded graphite polyetherimide composite with superior electrical and thermal conductivity. Mater Chem Phys. 2023;298:127404.

    Article  CAS  Google Scholar 

  48. Wu XD, Yu HJ, Wang L, Meng XG, Huang ZK, Liu XW, Gong XD, Liu JY. Enhancing thermal conductivity of epoxy composites via f-BN@f-MgO hybrid fillers assisted by hot pressing. Polym Compos. 2023;44:2966–76.

    Article  CAS  Google Scholar 

  49. Mao L-K, Zhao R, Chen J, Cheng W-L. Theoretical and experimental study on the anisotropic thermal conductivity of composite phase change materials prepared by hot-pressing method. Int J Heat Mass Transf. 2022;198:123380.

    Article  Google Scholar 

  50. Jin LP, Ji CP, Chen S, Song ZC, Zhou JT, Qian K, Guo WW. Multifunctional textiles with flame retardant and antibacterial properties: a review. Molecules. 2023;28(18):6628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharma D, Rakshana DA, Balakrishnan RM, JagadeeshBabu PE. One step synthesis of silver nanowires using fructose as a reducing agent and its antibacterial and antioxidant analysis. Mater Res Express. 2019;6:075050.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52271205, 51971068, U20A20237, 52371218, 51863005, 52101245, and 51871065), the Scientific Research and Technology Development Program of Guangxi (AA19182014, AD17195073, and AA17202030-1), Guangxi Key Research and Development Program (2021AB17045), Science Research and Technology Development project of Guilin (20210216-1 and 20210102-4), Guangxi Bagui Scholar Foundation, Guilin Lijiang Scholar Foundation, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands, Chinesisch-Deutsche Kooperationsgruppe (GZ1528), and Guangxi Key Laboratory of Sustainable Utilization of Plant Functional Substances (FPRU2022-4). Special thanks to Dr. Yongpeng Xia for his support of this article.

Author information

Authors and Affiliations

Authors

Contributions

LS contributed to original draft, data colleting, experiment design, investigation, and data analysis. YY helped in data analysis and revised the paper. HH helped in production of schematic diagram. YW and XJ helped in data colleting and collating. LS worked in project administration and funding acquisition. FX worked in supervision and project administration. HZ, BL, and TY revised the paper. JZ and ZC worked in supervision and conceptualization of manuscript.

Corresponding authors

Correspondence to Lixian Sun or Fen Xu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Yang, Y., Hu, H. et al. Thermodynamic study on expanded graphite-based multifunctional composite phase change materials for personal thermal management and medical protection. J Therm Anal Calorim 149, 595–607 (2024). https://doi.org/10.1007/s10973-023-12662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12662-8

Keywords

Navigation