Skip to main content
Log in

Preparation and Evaluation of Graphene/Polyvinyl Alcohol-coated Thermoplastic Elastomer Filament

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a conductive thermoplastic elastomer (TPE) filament coated was developed with a graphene/polyvinyl alcohol composite solution by spray-coating it with an airbrush. The graphene/polyvinyl alcohol composite solution was prepared with three types of graphene content of 2 wt%, 8 wt%, and 16 wt%, and coated it 1, 5, 10, 15, 20, and 25 times. The prepared samples were analyzed by means of morphology, increase of diameter, pick-up rate, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength, and conductivity. From the morphology and the increase of diameter and pick-up rate, it was confirmed that the diameter and weight increased as the graphene content and the number of coatings increased. In DSC, glass transition temperature and melting temperature were similar to those of TPE, but the enthalpy was increased as the number of coatings increased. For TGA, the residue increased as the graphene content and the number of coatings increased. For tensile strength, it was confirmed that the graphene content of 2 wt% composite solution had the best adhesion to the TPE filament surface resulting in a great tensile strength. The conductivity was the best when coated with a 16 wt% composite solution. Therefore, this study confirmed that the conductive filament, which is intended to be applied to wearable healthcare clothing in the future, needs to be coated with a 16 wt% graphene composite solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Nurhamiyah, G. Irvine, E. Themistou, B. Chen, Macromol. Chem. Phys. 222, 2100218 (2021)

    Article  CAS  Google Scholar 

  2. T. Wang, C. Wu, X. Ji, D. Cui, Angew. Chem. 133, 25939–25944 (2021)

    Article  Google Scholar 

  3. L. Shi, R. Zhang, W. Ying, H. Hu, Y. Wang, Y. Guo, W. Wang, Z. Tang, J. Zhu, Chin. J. Polym. Sci. 37, 1152–1161 (2019)

    Article  CAS  Google Scholar 

  4. K. Chynybekova, S. Choi, Symmetry 11(11), 1398 (2019)

    Article  CAS  Google Scholar 

  5. M. León-Calero, S.C.R. Valés, A. Marcos-Fernández, J. Rodríguez-Hernandez, Polymers 13, 3551 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deepa, K.S. Satheeshkumar, A. Arun, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.09.265

    Article  Google Scholar 

  7. M. Zahid, A. Zych, S. Dussoni, G. Spallanzani, R. Donno, M. Maggiali, A. Athanassiou, Compos. Part B 220, 108969 (2021)

    Article  CAS  Google Scholar 

  8. N. Khalili, H. Asif, H.E. Naguib, Smart Mater. Struct. 27(5), 055002 (2018)

    Article  Google Scholar 

  9. B. Stephenes-Fripp, V. Sencadas, R. Mutlu, G. Alici, Front. Bioeng Biotechnol. 6, 179 (2018)

    Article  Google Scholar 

  10. D. Singh, C. Tawk, R. Mutlu, A 3D Printed Soft Robotic Monolithic Unit for Haptic Feedback Devices, 2019 IEEE/ASME Int. Conf. AIM., pp. 388–393, 2019.

  11. A. Georgopoulou, T. Sebastian, F. Clemenes, Flex. Print. Electron. 5, 035002 (2020)

    Article  CAS  Google Scholar 

  12. N. Karim, S. Afroj, D. Leech, A. M. Abdelkader, “Oxide Electronics”, 1st ed., pp. 21–49, John Wiley & Sons Ltd., Hoboken, New Jersey, 2021.

  13. M. Korger, A. Glogowsky, S. Sanduloff, C. Steinem, S. Huysman, B. Horn, M. Ernst, M. Rabe, J. Eng. Fiber. Fabr. 15, 1–10 (2020)

    Google Scholar 

  14. A. Haryńska, I. Carayon, P. Kosmela, K. Szeliski, M. Łapiński, M. Pokrywczyńska, J. Kucińska-Lipka, H. Janik, Eur. Polymer J. 138, 109958 (2020)

    Article  Google Scholar 

  15. E.O. Bachtiar, O. Erol, M. Millrod, R. Tao, D.H. Gracias, L.H. Romer, S.H. Kang, J. Mech. Behav. Biomed. Mater. 104, 103649 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K.H. Lee, D.K. Kim, Y.H. Cha, J. Kwon, D. Kim, S.J. Kim, Disabil. Rehabil. Assist. Technol. 14(5), 526–531 (2019)

    Article  PubMed  Google Scholar 

  17. N. Sabyrov, Z. Sotsial, A. Abilgaziyev, D. Adair, M.H. Ali, Procedia Comput. Sci. 179, 63–71 (2021)

    Article  Google Scholar 

  18. C. Liu, Y. Chen, S. Yang, Mater. Today Commun. 26, 101895 (2021)

    Article  CAS  Google Scholar 

  19. D. Kalaš, K. Šíma, P. Kadlec, R. Polanský, R. Soukup, J. Řeboun, A. Hamáček, Polymers 13, 3702 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  20. A. Georgopoulou, L. Egloff, B. Vanderborght, F. Clemens, Clemens. Actuators 10, 102 (2021)

    Article  Google Scholar 

  21. H.B. Gunasekaran, S. Ponnan, Y. Zheng, A. Laroui, H. Wang, L. Wu, J. Wang, A.C.S. Appl, Mater. Interfaces 14, 22615–22625 (2022)

    Article  CAS  Google Scholar 

  22. L. Yang, Y. Chen, M. Wang, S. Shi, J. Jing, Ind. Eng. Chem. Res. 59, 8066–8077 (2020)

    Article  CAS  Google Scholar 

  23. Z. Li, B. Li, B. Chen, J. Zhang, Y. Li, Nanotechnology 32, 395503 (2021)

    Article  CAS  Google Scholar 

  24. H. Kim, S. Lee, Text. Sci. Eng. 57(3), 166–176 (2020)

    CAS  Google Scholar 

  25. I. Jung, E. Shin, S. Lee, Text. Sci. Eng. 59(1), 36–46 (2022)

    CAS  Google Scholar 

  26. H. Kim, S. Lee, Polymers 13, 2010 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Kim, S. Lee, Fash. Text. 7, 8 (2020)

    Article  Google Scholar 

  28. H. Kim, S. Lee, Fibers Polym. 22(1), 276–284 (2021)

    Article  CAS  Google Scholar 

  29. H. Kim, S. Lee, Polymers 11, 928 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  30. H. Kim, S. Lee, Fibers Polym. 19(11), 2351–2358 (2018)

    Article  CAS  Google Scholar 

  31. H. Kim, S. Lee, Fash. Text. 5, 7 (2018)

    Article  Google Scholar 

  32. H. Kim, S. Lee, Fibers Polym. 19(5), 965–976 (2018)

    Article  CAS  Google Scholar 

  33. H.Y. Choi, E.J. Shin, S.H. Lee, Sci. Rep. 12, 7780 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Somdee, T. Lassu-kuknyo, C. Konya, T. Szabo, K. Marossy, J. Therm. Anal. Calorim. 138, 1003–1010 (2019)

    Article  CAS  Google Scholar 

  35. J. G. Drobny, Handbook of Thermoplastic Elastomers, 1st ed., pp. 1–8, William Andrew Publishing, Norwich, Newyork, 2007.

  36. F. Farivar, P. L. Yap, R. U. Karunagaran, and D. Losic, C, 7(2), 41 (2021).

  37. M.R. Islam, S. Afroj, C. Beach, M.H. Islam, C. Parraman, A. Abdelkader, A.J. Casson, K.S. Novoselov, N. Karim, Science 25, 103945 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research of Korea (NRF) funded by the Ministry of Science and ICT (No. NFR-2021R1A4A1022059)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunhee Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, I., Lee, S. Preparation and Evaluation of Graphene/Polyvinyl Alcohol-coated Thermoplastic Elastomer Filament. Fibers Polym 24, 285–297 (2023). https://doi.org/10.1007/s12221-023-00105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00105-y

Keywords

Navigation