Skip to main content
Log in

Ventilation effect on the fire behavior in a vehicle engine compartment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study investigates the impact of ventilation, specifically modeled by a radiator fan, on heptane pool fires within a military ground vehicle engine compartment. Experiments were conducted in a 2.44 m3 scale-1 compartment with varying fan-generated inflow velocities, initial fuel thicknesses, and pan diameters. The primary objective is to comprehensively assess how ventilation conditions affect pool fire behavior, focusing on properties such as mass loss rate, heat release, temperature, and heat flux in both the boiling and steady stages. The results reveal that the boiling stage occurs at initial fuel thicknesses of 10 and 15 mm, allowing us to analyze the boiling-to-steady ratio. This ratio exhibits variation across parameters. For burning duration, the ratios range from 0.45 to 0.93, while for mass loss rate, the ratios range from 2.3 to 3.5. Regarding total heat flux, the ratios span from 2.5 to 4. The boiling-to-steady ratio for temperature varies by position: in the vertical tree, it ranges from 1.1 to 1.7; in the ceiling tree, it ranges from 2.2 to 2.9; and in the ceiling side tree, it ranges from 1.2 to 2.25. Ventilation influences the boiling-to-steady ratio. Increasing inflow velocity generally increases the ratio for burning duration and ceiling tree temperature while decreasing the ratio for mass loss rate. The impact of ventilation on other properties depends on pan diameter and initial fuel thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

ACPH:

Air changes per hour

HRR:

Heat release rate

MLR:

Mass loss rate

NATO:

The North Atlantic Treaty Organization

NFPA:

National Fire Protection Association

PSD:

Power spectral density

STANAG:

Standardization agreement

MKE:

Mean kinetic energy

TKE:

Turbulent kinetic energy

1D:

One dimensional

Ap:

Fuel pan area (m2)

\(\Delta {H_{\text{c}}}\) :

The heat of combustion (kJ kg−1)

conc.:

Concentrations

DP:

Diameter of pan (cm)

f :

Flame oscillation frequencies

FH:

Fuel thickness (mm)

\(I(\% )\) :

Turbulent intensity (%)

\(M\) :

Molar mas

m :

Mass (gr or kg)

\(\dot m\) :

Mass loss rate (kg m−2 s−1)

\(\bar{\dot {m}}\) :

Mass loss rate average (kg m−2 s−1)

P1:

Position 1

P2:

Position 2

P3:

Position 3

\(P_{{\text{a}}}\) :

Ambient pressure (Pa)

\(P_{{\text{s}}}\) :

The saturation pressure of water vapor (Pa)

RH:

Relative humidity (%)

T :

Temperature (K or °C)

\(\overline{T }\) :

Temperature average (K or °C)

\(T_{{\text{a}}}\) :

Temperature ambient (K or °C)

t :

Time (s)

\(U_{in}\) :

Inflow velocity (m s−1)

\(u_{i}\) :

Instantaneous velocity (m s−1)

\(\overline{u}\) :

Mean velocity (m s−1)

\(u^{\prime}\) :

Turbulent velocity fluctuation (m s−1)

\(\dot{Q}\) :

Heat release rate (kW)

\(\overline{\dot{Q} }\) :

Heat release rate average (kW)

\(\dot{q}\) :

Heat flux (kW m2)

\(\overline{\dot{q} }\) :

Heat flux average (kW m−2)

\(X\) :

Molar fraction

χ:

Efficiency of combustion

conv:

Convective

i:

Initial

ig:

Initial growth stage

f:

Fuel

bl:

Bulk boiling

rad:

Radiative

st:

Steady

tot:

Total

tr:

Transition

dc:

Decay

VT:

Vertical tree of thermocouples

CT:

Ceiling tree of thermocouples

CST:

Ceiling side tree of thermocouples

HFT:

Tree of heat flux sensor

References

  1. Junjunan SF, Chetehouna K, Cablé A, Oger A, Gascoin N, Bura RO. A review on fire protection systems in military and civilian vehicles. Fire Technol. 2022;58:1097–136.

    Article  Google Scholar 

  2. Finnerty AE, Polyanski S. Using powder packs for passive fire protection of military vehicles. J Fire Sci. 1993;11:242–54.

    Article  CAS  Google Scholar 

  3. Rudz S, Chetehouna K, Strozzi C, Gillard P. Minimum ignition energy measurements for α-pinene/air mixtures. Combust Sci Technol. 2014;186:1597–605.

    Article  CAS  Google Scholar 

  4. McCormick S. Fire Protection for Military Ground Vehicles. Presented at 2009 SAE World Congress. Detroit, Michigan, USA; 2009.

  5. NFPA. Reporter’s Guide: All about fire [Internet]. 2022 [cited 2022 Dec 20]. Available from: https://www.nfpa.org/News-and-Research/Publications-and-media/Press-Room/Reporters-Guide-to-Fire-and-NFPA/All-about-fire

  6. Zhao K, Wang Z, Ma S, Ju X, Guo P, Cao X. Experimental study on the diffusion burning and radiative heat delivery of two adjacent heptane pool fires. Int J Therm Sci. 2022;171: 107246.

    Article  CAS  Google Scholar 

  7. Li C, Yang R, Li C, Zhang H. Experimental investigation of n-Heptane ring fires with varying shape characteristics under sub-atmospheric pressures. Experimental Heat Transfer. 2021;34:105–20.

    Article  CAS  Google Scholar 

  8. Ji J, Yuan X, Li K, Yang L, Sun J. A mathematical model for burning rate of n-heptane pool fires under external wind conditions in long passage connected to a shaft. Appl Therm Eng. 2017;116:91–9.

    Article  CAS  Google Scholar 

  9. Truchot B, Durussel T, Duplantier S. Combustion rate of medium scale pool fire, an unsteady parameter. In: International Symposium on Safety Science and Technology 2010 (ISSST 2010). 2010, pp 575–85.

  10. Chen B, Lu S, Li C, Kang Q, Yuan M. Unsteady burning of thin-layer pool fires. J Fire Sci. 2012;30:3–15.

    Article  Google Scholar 

  11. Wang C, Wen J. Numerical study of heptane pool fires on a hollow square pan. Proc Eng. 2018;211:689–98.

    Article  CAS  Google Scholar 

  12. Junjunan SF, Chetehouna K, Cablé A, Abdlgwad A, Oger A, Bura RO. Study of heptane pool fire in well-confined military vehicle engine compartment. In: Proceeding of Proceedings of CONV-22: Int Symp on Convective Heat and Mass Transfer June 5–10, 2022, Turkey. Connecticut: Begellhouse; 2022. p. 199–206.

  13. Hu L. A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J. 2017;91:41–55.

    Article  Google Scholar 

  14. Li Z, He Y, Zhang H, Wang J. Combustion characteristics of n-heptane and wood crib fires at different altitudes. Proc Combust Inst. 2009;32:2481–8.

    Article  CAS  Google Scholar 

  15. Hu X, He Y, Li Z, Wang J. Combustion characteristics of n-heptane at high altitudes. Proc Combust Inst. 2011;33:2607–15.

    Article  CAS  Google Scholar 

  16. Mense M, Pizzo Y, Prétrel H, Lallemand C, Porterie B. Experimental and numerical study on low-frequency oscillating behaviour of liquid pool fires in a small-scale mechanically-ventilated compartment. Fire Saf J. 2019;108: 102824.

    Article  CAS  Google Scholar 

  17. Acherar L, Jamaladdeen R, Coudour B, Garo JP, Wang H-Y. Influence of air intake position on heat feedback to the fuel surface in mechanically ventilated compartment - an experimental study. Int J Therm Sci. 2022;180: 107713.

    Article  CAS  Google Scholar 

  18. Wang J, Cui X, Zhang R, Xie Q, Zhang S, Shi L. Study on the mass loss rate of liquid pool fire in a well-confined ship cabin. Int J Therm Sci. 2021;166: 106984.

    Article  CAS  Google Scholar 

  19. Fan CG, Zhang JQ, Zhu KJ, Li KY. An experimental study of temperature and heat flux in a channel with an asymmetric thermal plume. Appl Therm Eng. 2017;113:1128–36.

    Article  Google Scholar 

  20. Fan CG, Ji J, Sun JH. Influence of longitudinal fire location on smoke characteristics under the tunnel ceiling. Fire Mater. 2015;39:72–84.

    Article  CAS  Google Scholar 

  21. Ji J, Wan H, Gao Z, Fu Y, Sun J, Zhang Y, et al. Experimental study on flame merging behaviors from two pool fires along the longitudinal centerline of model tunnel with natural ventilation. Combust Flame. 2016;173:307–18.

    Article  CAS  Google Scholar 

  22. Wan H, Gao Z, Ji J, Zhang Y, Li K, Wang L. Effects of pool size and spacing on burning rate and flame height of two square heptane pool fires. J Hazard Mater. 2019;369:116–24.

    Article  CAS  PubMed  Google Scholar 

  23. Hu LH, Liu S, Peng W, Huo R. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel. J Hazard Mater. 2009;169:972–9.

    Article  CAS  PubMed  Google Scholar 

  24. Chen B, Lu S-X, Li C-H, Kang Q-S, Lecoustre V. Initial fuel temperature effects on burning rate of pool fire. J Hazard Mater. 2011;188:369–74.

    Article  CAS  PubMed  Google Scholar 

  25. Shafee S, Yozgatligil A. An experimental study on the burning rates of interacting fires in tunnels. Fire Saf J. 2018;96:115–23.

    Article  Google Scholar 

  26. Yamal TU. An Experimental study on the pool fire burning characteristics of n-heptane and ethanol in the tunnels. Middle East Technical University; 2015.

  27. Roh JS, Ryou HS, Kim DH, Jung WS, Jang YJ. Critical velocity and burning rate in pool fire during longitudinal ventilation. Tunn Undergr Space Technol. 2007;22:262–71.

    Article  Google Scholar 

  28. Nasr A, Suard S, El-Rabii H, Garo JP, Gay L, Rigollet L. Heat feedback to the fuel surface of a pool fire in an enclosure. Fire Saf J. 2013;60:56–63.

    Article  CAS  Google Scholar 

  29. Liu W, Wang L, Su S, Wu Z, Guo Y, Du K. Study of the flame flow and combustion characteristics of pool fires around a bluff body in the ship engine room. Case Stud Thermal Eng. 2021;28: 101514.

    Article  Google Scholar 

  30. Lassus J, Courty L, Garo JP, Studer E, Jourda P, Aine P. Ventilation effects in confined and mechanically ventilated fires. Int J Therm Sci. 2014;75:87–94.

    Article  CAS  Google Scholar 

  31. Wang L, Guo Y, Xia Z, Lao X, Su S, Yuan Z, et al. Experimental study on mass burning rate and flame geometry of pool fires under two-way indirect ventilation in Ship’s engine room. Case Stud Thermal Eng. 2023;41: 102595.

    Article  Google Scholar 

  32. Nasr A, Suard S, El-Rabii H, Gay L, Garo JP. Experimental study on pyrolysis of a heptane pool fire in a reducedscale compartment. In: 7th mediterranean combustion symposium. 2011.

  33. Manescau B, Courty L, Acherar L, Coudour B, Wang H-Y, Garo J-P. Effects of ventilation conditions and procedures during a fire in a reduced-scale room. Process Saf Environ Prot. 2020;144:263–72.

    Article  CAS  Google Scholar 

  34. armyrecognition. https://www.armyrecognition.com/.

  35. Archer CL. Evaluation of global wind power. J Geophys Res. 2005;110:D12110.

    Google Scholar 

  36. STANAG 4317, Procedures for the Assessment of Fire Protection Levels for Land Vehicles. 2017.

  37. Trefethen LM, Panton RL. Some unanswered questions in fluid mechanics. Appl Mech Rev. 1990;43:153–70.

    Article  Google Scholar 

  38. Robinet A, Chetehouna K, Junjunan S, Cablé A, Oger A. Thermal and spectral analysis of a pool fire in an engine compartment: experimental study on the influence of ventilation and fuel depth. Process Saf Environ Prot. 2023;174:200–13.

    Article  CAS  Google Scholar 

  39. Unsteady HH, Fires BROSP. Fire. Saf Sci. 1997;5:499–510.

    Google Scholar 

  40. Zhao J, Zhang Q, Zhang X, Zhang J, Yang R, Lu Y. Experimental study and thermal hazard analysis of large-scale n-heptane pool fires under sub-atmospheric pressure. Process Saf Environ Prot. 2022;166:279–89.

    Article  CAS  Google Scholar 

  41. Yin J, Yao W, Liu Q, Zhou Z, Wu N, Zhang H, et al. Experimental study of n-Heptane pool fire behavior in an altitude chamber. Int J Heat Mass Transf. 2013;62:543–52.

    Article  CAS  Google Scholar 

  42. Ma Q, Liu Q, Zhang H, Tian R, Ye J, Yang R. Experimental study of the mass burning rate in n-Heptane pool fire under dynamic pressure. Appl Therm Eng. 2017;113:1004–10.

    Article  CAS  Google Scholar 

  43. Liu Q, Ma Q, Zhang H, Yang R, Wei D, Lin C-H. Experimental study on n-heptane pool fire behavior under dynamic pressure in an altitude chamber. J Therm Anal Calorim. 2017;128:1151–63.

    Article  CAS  Google Scholar 

  44. Li C, Yang R, Yao Y, Tao Z, Liu Q. Factors affecting the burning rate of pool fire in a depressurization aircraft cargo compartment. Appl Therm Eng. 2018;135:350–5.

    Article  CAS  Google Scholar 

  45. Li C, Yao Y, Tao Z, Yang R, Zhang H. Influence of depressurized environment on the fire behaviour in a dynamic pressure cabin. Appl Therm Eng. 2017;125:972–7.

    Article  CAS  Google Scholar 

  46. Jiao Y, Gao W, Liu N, Lei J, Xie X, Zhang L, et al. Interpretation on fire interaction mechanisms of multiple pool fires. Proc Combust Inst. 2019;37:3967–74.

    Article  CAS  Google Scholar 

  47. Miller FJ, Ross HD. Liquid-phase velocity and temperature fields during uniform flame spread over 1-propanol. Transport Phenomena in Combustion, 1996;736–44.

  48. Wu H, Jiang J-C, Huang A-C, Tang Y, Liu Y-C, Zhai J, et al. Effect of emulsifiers on the thermal stability of firework propellants. J Therm Anal Calorim. 2023;148:4959–67.

    Article  CAS  Google Scholar 

  49. Liu Y-C, Jiang J-C, Huang A-C. Experimental study on extinguishing oil fire by water mist with polymer composite additives. J Therm Anal Calorim. 2023;148:4811–22.

    Article  CAS  Google Scholar 

  50. Zhou H-L, Liu Y-C, Tang Y, Zhai J, Cheng Y-C, Shu C-M, et al. Utilizing thermokinetic and calorimetric methods to assess the impact of an initiator on the thermal hazard of diallyl phthalate. J Therm Anal Calorim. 2023;148:5017–27.

    Article  CAS  Google Scholar 

  51. Zhou H-L, Jiang J-C, Huang A-C, Tang Y, Zhang Y, Huang C-F, et al. Calorimetric evaluation of thermal stability and runaway hazard based on thermokinetic parameters of O, O–dimethyl phosphoramidothioate. J Loss Prev Process Ind. 2022;75: 104697.

    Article  CAS  Google Scholar 

  52. Liu Y-C, Zhou H-L, Tang Y, Li Y, Zhai J, Jiang J-C, et al. Thermal hazard assessment by TGA, DSC, and ARC experimental and simulated thermokinetic approaches for trinitrophloroglucinol. J Therm Anal Calorim. 2023;148:5039–49.

    Article  CAS  Google Scholar 

  53. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18:255–72.

    Article  CAS  Google Scholar 

  54. Grant GB, Drysdale D. Estimating heat release rates from large-scale tunnel fires. In: Fire Safety Science-Proceedings of the fifth international symposium. 1997. pp. 1213–24.

  55. Biteau H, Steinhaus T, Schemel C, Simeoni A, Marlair G, Bal N, et al. Calculation methods for the heat release rate of materials of unknown composition. Fire Safety Sci. 2008;9:1165–76.

    Article  Google Scholar 

  56. Cortés D, Gil D, Azorín J, Vandecasteele F, Verstockt S. A review of modelling and simulation methods for flashover prediction in confined space fires. Appl Sci. 2020;10:5609.

    Article  Google Scholar 

  57. Janssens ML. Measuring rate of heat release by oxygen consumption. Fire Technol. 1991;27:234–49.

    Article  Google Scholar 

  58. Brohez S, Delvosalle C, Marlair G, Tewarson A. Accurate calculations of heat release in fires. In: Proceedings of the 13th International Congress of Chemical and Process Engineering (2nd Symposium on Environmental and Safety Engineering, CHISA 98), paper. 1998. p. 12.

  59. Reitz RD. Directions in internal combustion engine research. Combust Flame. 2013;160:1–8.

    Article  CAS  Google Scholar 

  60. Junjunan SF, Chetehouna K, Cablé A, Robinet A, Hamidouche S, Gascoin N, et al. Experimental study of the radiative heat flux during water mist fire suppression in an engine compartment. In: Proceeding of Proceedings of the 10th International Symposium on Radiative Transfer, RAD-23 Thessaloniki, Greece, 12–16 June 2023. Connecticut: Begellhouse; 2023. pp. 375–82.

  61. Hansen R. The passive fire protection of mining vehicles in underground hard rock mines. Min Metall Explor. 2021;38:609–22.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support and funding from the French National Agency for Research (ANR) in the scope of the ANR LabCom GreenSprink (2018–2023) project, as well as the support from Campus France in the scope of the first author's PhD thesis grant (2020–2023).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. SFJ, AR, KC, AC, and AO performed material preparation, data collection, and analysis. SFJ wrote the first draft of the manuscript, and all authors read, commented, and approved the manuscript.

Corresponding author

Correspondence to Soleh F. Junjunan.

Ethics declarations

Conflict of interest

All authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junjunan, S.F., Robinet, A., Chetehouna, K. et al. Ventilation effect on the fire behavior in a vehicle engine compartment. J Therm Anal Calorim 149, 555–584 (2024). https://doi.org/10.1007/s10973-023-12660-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12660-w

Keywords

Navigation