Skip to main content
Log in

Influence of high temperature ternary and quaternary additions on the phase transformation and actuation fatigue characteristics of NiTi shape memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Shape memory alloys (SMAs) are a type of metal with two distinct properties: superelasticity and shape memory. When SMAs are subjected to thermomechanical treatment, they become responsive to stimuli such as thermal gradient. As a result, these alloys have shown to be useful in a variety of applications, including sensors and actuators, as well as different medical devices. When it comes to shape memory materials, Ni–Ti alloys are famous and have been used in a variety of applications. The demand for shape memory alloys with high transformation temperatures (HTSMA) has risen, owing not just to academic interest but also to market demand, particularly from the transportation and oil industries, as well as robots. The actuation fatigue performance of ternary HTSMA—Ni50Ti30Zr20/Hf20 (at %) and quaternary HTSMA—Ni50Ti30Zr10Hf10 was evaluated and compared. Actuation fatigue tests were performed on both ternary and quaternary HTSMA on application of constant loads ranging from 250 to 450 MPa until failure occurred. This work concentrates on studying and comparing the temperatures at which phase transformation occurs before and after actuation fatigue tests were conducted, and to correlate the results for future development of HTSMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dogan A, Arslan H. Effect of ball-milling conditions on microstructure during production of Fe–20Mn–6Si–9Cr shape memory alloy powders by mechanical alloying. J Therm Anal Calorim. 2012;109:933–8. https://doi.org/10.1007/s10973-011-1809-x.

    Article  CAS  Google Scholar 

  2. Abdullah SS, Balci E, Qader IN, et al. Assessment of biocompatibility and physical properties of Ni–Ti–Zr–Nb shape memory alloys. Trans Indian Inst Met. 2023;76:1237–42. https://doi.org/10.1007/s12666-022-02841-w.

    Article  CAS  Google Scholar 

  3. Sampath V, Srinithi R, Santosh S, Sarangi PP, Fathima JS. The effect of quenching methods on transformation characteristics and microstructure of an NiTiCu shape memory alloy. Trans Indian Inst Met. 2020;73:1481–8. https://doi.org/10.1007/s12666-020-01909-9.

    Article  CAS  Google Scholar 

  4. Dagdelen F, Kok M, Qader IN. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Met Mater Int. 2019;25:1420–7. https://doi.org/10.1007/s12540-019-00298-z.

    Article  CAS  Google Scholar 

  5. Sung HH, Jeong TK, Hae JP, Young SK, Jin YS, Young SN, Ka RL, Cheol HS, Jin MP, Ki BK. Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys. J Alloys Compd. 2017;692:77–85. https://doi.org/10.1016/j.jallcom.2016.09.023.

    Article  CAS  Google Scholar 

  6. Evirgen A, Pons J, Karaman I, et al. H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-Temperature Shape Memory Alloys. Shap Mem Superelasticity. 2018;4:85–92. https://doi.org/10.1007/s40830-018-0165-0.

    Article  Google Scholar 

  7. Pérez-Sierra AM, Pons J, Santamarta R, Karaman I, Noebe RD. Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling. Scr Mater. 2016;124:47–50. https://doi.org/10.1016/j.scriptamat.2016.06.029.

    Article  CAS  Google Scholar 

  8. Santosh S, Praveen R, Sampath V. Influence of cobalt on the hot deformation characteristics of an NiTi shape memory alloy. Trans Indian Inst Met. 2019;72:1465–8. https://doi.org/10.1007/s12666-019-01591-6.

    Article  CAS  Google Scholar 

  9. Santosh S, Sampath V, Mouliswar RR. Hot deformation characteristics of NiTiV shape memory alloy and modeling using constitutive equations and artificial neural networks. J Alloy Compd. 2022;901: 163451. https://doi.org/10.1016/j.jallcom.2021.163451.

    Article  CAS  Google Scholar 

  10. Oliveira JP, Miranda RM, Schell N, Braz Fernandes FM. High strain and long duration cycling behaviour of laser welded NiTi sheets. Int J Fatigue. 2016;83:195–200. https://doi.org/10.1016/j.ijfatigue.2015.10.013.

    Article  CAS  Google Scholar 

  11. Yamabe-Mitarai Y. TiPd- and TiPt-based high-temperature shape memory alloys: a review on recent advances. Metals. 2020;10:1531. https://doi.org/10.3390/met10111531.

    Article  CAS  Google Scholar 

  12. Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev. 2010;55:257–315. https://doi.org/10.1179/095066010X12646898728363.

    Article  CAS  Google Scholar 

  13. Bigelow GS, Padula SA, Garg A, et al. Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling. Metall Mater Trans A. 2010;41:3065–79. https://doi.org/10.1007/s11661-010-0365-5.

    Article  CAS  Google Scholar 

  14. Benafan O, Bigelow GS, Garg A, et al. Processing and scalability of NiTiHf high-temperature shape memory alloys. Shap Mem Superelasticity. 2021;7:109–65. https://doi.org/10.1007/s40830-020-00306-x.

    Article  Google Scholar 

  15. Benafan O, Noebe RD, Halsmer TJ, et al. Constant-strain thermal cycling of a Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Shap Mem Superelasticity. 2016;2:218–27. https://doi.org/10.1007/s40830-016-0068-x.

    Article  Google Scholar 

  16. Bigelow GS, Benafan O, Garg A, et al. Effect of composition and applied stress on the transformation behavior in NiXTi80−XZr20 shape memory alloys. Shap Mem Superelasticity. 2019;5:444–56. https://doi.org/10.1007/s40830-019-00259-w.

    Article  Google Scholar 

  17. Bucsek AN, Hudish GA, Bigelow GS, et al. Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shap Mem Superelasticity. 2016;2:62–79. https://doi.org/10.1007/s40830-016-0052-5.

    Article  Google Scholar 

  18. Lemke JN, Gallino F, Cresci M, Zilio S, Coda A. Low-hysteresis shape memory alloy scale-up: DSC, XRD and microstructure analysis on heat-treated vacuum induction melted Ni-Ti-Cu-Pd alloys. Metals. 2021;11:1387. https://doi.org/10.3390/met11091387.

    Article  CAS  Google Scholar 

  19. Sandu A, Tsuchiya K, Yamamoto S, Tabuchi M, Todaka Y, Umemoto M. Effect of aging on microstructure and martensitic transformation in Ti-Zr-Ni shape memory alloys. Mater Sci Forum. 2007. https://doi.org/10.4028/www.scientific.net/MSF.539-543.3163.

    Article  Google Scholar 

  20. Meng XL, Zheng Y-F, Wang Z, Zhao L. Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy. Mater Lett. 2000;45(2):128–32. https://doi.org/10.1016/S0167-577X(00)00091-4.

    Article  CAS  Google Scholar 

  21. Meng X, Cai W, Zheng Y, Tong Y, Zhao L, Zhou L. Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett. 2002;55(1):111–5. https://doi.org/10.1016/S0167-577X(01)00631-0.

    Article  CAS  Google Scholar 

  22. Babacan N, Bilal M, Hayrettin C, Liu J, Benafan O, Karaman I. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high temperature shape memory alloy. Acta Mater. 2018;157:228–44. https://doi.org/10.1016/j.actamat.2018.07.009.

    Article  CAS  Google Scholar 

  23. Coughlin D, Phillips P, Bigelow G, Garg A, Noebe R, Mills M. Characterization of the microstructure and mechanical properties of a Ni503Ti297Hf20 shape memory alloy. Scripta Mater. 2012;67(1):112–5. https://doi.org/10.1016/j.actamat.2013.08.048.

    Article  CAS  Google Scholar 

  24. Karaca H, Saghaian S, Ded G, Tobe H, Basaran B, Maier H, Noebe R, Chumlyakov Y. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater. 2013;61:7422–31. https://doi.org/10.1016/j.actamat.2013.08.048.

    Article  CAS  Google Scholar 

  25. Miller DA, Lagoudas DC. Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains. Smart Mater Struct. 2000;9(5):640. https://doi.org/10.1088/0964-1726/9/5/308.

    Article  CAS  Google Scholar 

  26. Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A. 2004;378(1):24–33. https://doi.org/10.1016/j.msea.2003.10.327.

    Article  CAS  Google Scholar 

  27. Bertacchini OW, Lagoudas DC, Patoor E. Thermomechanical transformation fatigue of TiNiCu SMA actuators under a corrosive environment–Part I: experimental results. Int J Fatig. 2009;31(10):1571–8. https://doi.org/10.1016/j.ijfatigue.2009.04.012.

    Article  CAS  Google Scholar 

  28. Frenzel J, Zhang Z, Neuking K, Eggeler G. High quality vacuum induction melting of small quantities of NiTi shape meory alloys in graphite crucibles. J Alloy Compd. 2004;385:214–23. https://doi.org/10.1016/j.jallcom.2004.05.002.

    Article  CAS  Google Scholar 

  29. Balasubramaniyan C, Rajkumar K, Santosh S. Wire-EDM machinability investigation on quaternary Ni44Ti50Cu4Zr2 shape memory alloy. Mater Manuf process. 2021;36(10):1161–70. https://doi.org/10.1080/10426914.2021.1905833.

    Article  CAS  Google Scholar 

  30. Liu N, Huang WM. DSC study on temperature memory effect of NiTi shape memory alloy. Trans Nonferrous Met Soc China. 2006;16:37–41. https://doi.org/10.1016/S1003-6326(06)60138-6.

    Article  CAS  Google Scholar 

  31. Karakoc O, Atli KC, Benafan O, Noebe RD, Karaman I. Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys. Mater Sci Eng A. 2022;829: 142154. https://doi.org/10.1016/j.msea.2021.142154.

    Article  CAS  Google Scholar 

  32. Karakoc O, Hayrettin C, Canadinc D, Karaman I. Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Mater. 2018;153:156–68. https://doi.org/10.1016/j.actamat.2018.04.021.

    Article  CAS  Google Scholar 

  33. Karakoc O, Hayrettin C, Bass M, Wang S, Canadinc D, Mabe J, Lagoudas D, Karaman I. Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater. 2017;138:185–97. https://doi.org/10.1016/j.actamat.2017.07.035.

    Article  CAS  Google Scholar 

  34. Atli K, Karaman I, Noebe R, et al. Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall Mater Trans A. 2010;41:2485–97. https://doi.org/10.1007/s11661-010-0245-z.

    Article  CAS  Google Scholar 

  35. Panduranga MK, Shin DD, Carman GP. Shape memory behavior of high temperature Ti–Ni–Pt thin films. Thin Solid Films. 2006;515:1938–41. https://doi.org/10.1016/j.tsf.2006.07.153.

    Article  CAS  Google Scholar 

  36. Santamarta R, Arroyave R, Pons J, Evirgen A, Karaman I, Karaca H, Noebe R. TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater. 2013;61(16):6191–206. https://doi.org/10.1016/j.actamat.2013.06.057.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Santosh Sampath gratefully acknowledges the funding received from Sri Sivasubramaniya Nadar Trust with grant number SSN/IFFP/DECEMBER 2021/1-21/08.

Author information

Authors and Affiliations

Authors

Contributions

SS conceived and designed the analysis, collected data, contributed to analysis and tools, performed the analysis, wrote the paper, and reviewed the paper and acquired the funds.

Corresponding author

Correspondence to Santosh Sampath.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, S. Influence of high temperature ternary and quaternary additions on the phase transformation and actuation fatigue characteristics of NiTi shape memory alloys. J Therm Anal Calorim 148, 13273–13280 (2023). https://doi.org/10.1007/s10973-023-12654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12654-8

Keywords

Navigation