Skip to main content
Log in

Electromagnetohydrodynamic unsteady blood flow with ternary nanoparticles in a vertical irregular peristaltic flow: an exact treatment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is believed that the use of nanoparticles to assist the blood is one of the most essential strategies to combat cancer cells that are located inside the human body. This is accomplished by enclosing the cancer cells and subjecting the regions that are affected to heat, which kills the cells and makes it possible to dispose of them in a different manner. This study offers a mathematical depiction of the flow of blood that is supported by various nanoparticles (gold-Au, iron oxide-Fe3O4, and carbon nanotube particles-SWCNTs) as it travels through a vertical artery with varied undulation while being subjected to electric and magnetic fields. The modeling process was done by a set of nonlinear partial differential equations using the Poisson–Boltzmann equation and the momentum in both directions in addition to the heat equation. Some dimensionless parameters are used to linearize the system before being solved exactly with the assistance of Mathematica software. The hypothesis that the artery ripple is irregular, and that the artery is exposed to both magnetic and electric fields, in addition to using three different types of nanoparticles, represents a novelty of this work. The impact of these factors on the flow and streamlines inside the artery is observed by a set of graphs. The results tend to an augmentation in the transversal velocity may be seen in relation to the rise in nanoparticle concentration and the Grashof number, as opposed to the impact of the magnetic field, particularly in the context of unsteady flow. Moreover, the presence of irregularities in the artery leads to an increase in both longitudinal velocity and temperature while simultaneously diminishing the waviness of both parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Abbreviations

\({a}_{0}\) :

Breadth of the artery \((\mathrm{m})\)

\({B}_{0}\) :

Transverse magnetic strength (A m1)

\(Cp\) :

Specific heat (J kg1 K1)

\(e\) :

Electronic charge

\(E\) :

Electric field

\({E}_{\mathrm{x}}\) :

Longitudinal uniform electric field (V m1)

\(m\) :

Electro-osmotic number

\({n}_{0}\) :

Ion density

\(P\) :

Pressure (Kg m1s2)

\(Q\) :

Heat generation parameter

\(t\) :

Time (s)

\(T\) :

Temperature (\(\mathrm{K}\))

\({T}_{\mathrm{a}}\) :

Absolute temperature (\(\mathrm{K}\))

\(\mathrm{U}\) :

Axial velocity (m s1)

\(V\) :

Transverse velocity (m s1)

\({z}_{0}\) :

Valence

\(\alpha\) :

Electro-osmotic velocity

\(\beta\) :

Irregularity parameter

\(\delta\) :

Wave number (m−1)

\(\varepsilon\) :

Wave amplitude ratio

\({\epsilon }_{0}\) :

Solution’s permittivity constant (H m1)

\(k\) :

Debye–Hückel parameter

\({k}_{\mathrm{B}}\) :

Boltzmann constant (J K1)

\(\mu\) :

Dynamic viscosity (Ns m2)

\(\nu\) :

Kinematic viscosity (m2 s1)

\(\rho\) :

Density (Kg m3)

\({\rho }_{0}\) :

Net charge density (C m3)

\(\phi\) :

Nanoparticles volume fraction

\(\overline{\phi }\) :

EDL potential function

Gr :

Grashof number

\(M\) :

Magnetic parameter

\(\mathrm{Pr}\) :

Prandtl number

\(\mathrm{Re}\) :

Reynolds number

\(f\) :

Fluid base

\(\mathrm{nf}\) :

Nanofluid

\(\mathrm{hnf}\) :

Hybrid nanofluid

\(\mathrm{thnf}\) :

Ternary hybrid nanofluid

References

  1. Farooq N, Hussain A. Peristaltic analysis of Williamson blood flow model with solar biomimetic pump. Int Commun Heat Mass Transf. 2022;138: 106305.

    Google Scholar 

  2. Abo-Elkhair R, Bhatti M, Mekheimer KS. Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: an expanding horizon. Int Commun Heat Mass Transf. 2021;123: 105228.

    CAS  Google Scholar 

  3. Alqarni AJ, Abo-Elkhair R, Elsaid EM, Abdel-Aty A-H, Abdel-wahed MS. Effect of magnetic force and moderate Reynolds number on MHD Jeffrey hybrid nanofluid through peristaltic channel: application of cancer treatment. Eur Phys J Plus. 2023;138(2):1–30.

    Google Scholar 

  4. Abo-Elkhair R, Mekheimer KS, Moawad A. Cilia walls influence on peristaltically induced motion of magneto-fluid through a porous medium at moderate Reynolds number: numerical study. J Egypt Math Soc. 2017;25(2):238–51.

    Google Scholar 

  5. Mekheimer KS, Abo-Elkhair R. Lie point symmetries for biological magneto-Jeffrey fluid flow in expanding or contracting permeable walls: a blood vessel model. J Taibah Univ Sci. 2018;12(6):738–47.

    Google Scholar 

  6. Mekheimer KS, Hemada K, Raslan K, Abo-Elkhair R, Moawad A. Numerical study of a non-linear peristaltic transport: application of Adomian decomposition method (ADM). G E N. 2014;20(2):22–49.

    Google Scholar 

  7. Imran M, Shaheen A, Sherif E-SM, Rahimi-Gorji M, Seikh AH. Analysis of peristaltic flow of Jeffrey six constant nano fluid in a vertical non-uniform tube. Chin J Phys. 2020;66:60–73.

    CAS  Google Scholar 

  8. Abd Elmaboud Y, Abdelsalam SI, Mekheimer KS, Vafai K. Electromagnetic flow for two-layer immiscible fluids. Eng Sci Technol Int J. 2019;22(1):237–48.

    Google Scholar 

  9. Abd Elmaboud Y, Abdelsalam SI, Mekheimer KS. Couple stress fluid flow in a rotating channel with peristalsis. J Hydrodyn. 2018;30:307–16.

    Google Scholar 

  10. Mekheimer KS. Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels. Biorheology. 2002;39(6):755–65.

    PubMed  Google Scholar 

  11. Rashidi MM, Yang Z, Bhatti MM, Abbas MA. Heat and mass transfer analysis on MHD blood flow of Casson fluid model due to peristaltic wave. Therm Sci. 2018;22(6 Part A):2439–48.

    Google Scholar 

  12. Zain NM, Ismail Z. Numerical solution of magnetohydrodynamics effects on a generalised power law fluid model of blood flow through a bifurcated artery with an overlapping shaped stenosis. PLoS ONE. 2023;18(2): e0276576.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Halifi AS, Shafie S, Amin NS. Numerical solution of biomagnetic power-law fluid flow and heat transfer in a channel. Symmetry. 2020;12:1959.

    CAS  Google Scholar 

  14. Abubakar JU, Adeoye AD. Effects of radiative heat and magnetic field on blood flow in an inclined tapered stenosed porous artery. J Taibah Univ Sci. 2020;14(1):77–86.

    Google Scholar 

  15. Tong S, Zhu H, Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater Today. 2019;31:1–14.

    Google Scholar 

  16. Sodagar H, Shakiba A, Niazmand H. Numerical investigation of drug delivery by using magnetic field in a 90-degree bent vessel: a 3D simulation. Biomech Model Mechanobiol. 2020;19:2255–69.

    PubMed  Google Scholar 

  17. Ahmed R, Ali N, Al-Khaled K, Khan S, Tlili I. Finite difference simulations for non-isothermal hydromagnetic peristaltic flow of a bio-fluid in a curved channel: applications to physiological. Comput Methods Programs Biomed. 2020;195: 105672.

    PubMed  Google Scholar 

  18. Eldabe NT, Elbashbeshy EM, Emam TG, ELsaid EM. Effect of thermal radiation on heat transfer over an unsteady stretching surface in a micropolar fluid with variable heat flux. Int J Heat Technol. 2012;30(1):93–8.

    Google Scholar 

  19. Abdel-wahed MS, Elsaid EM. Magnetohydrodynamic flow and heat transfer over a moving cylinder in a nanofluid under convective boundary conditions and heat generation. Therm Sci. 2019;23(6B):3785–96.

    Google Scholar 

  20. EL-Bashbeshy EM, Emam TG, EL-Wahed MS. The effect of thermal radiation, heat generation and suction/injection on the mechanical properties of unsteady continuous moving cylinder in a nanofluid. Therm Sci. 2015;19(5):1591–601.

    Google Scholar 

  21. Raslan K, Mohamadain S, Abdel-Wahed MS, Abedel-aal EM. MHD steady/unsteady porous boundary layer of Cu-Water nanofluid with micropolar effect over a permeable surface. Appl Sci. 2018;8(5):736.

    Google Scholar 

  22. Hassan M, El-Zahar ER, Khan SU, Rahimi-Gorji M, Ahmad A. Boundary layer flow pattern of heat and mass for homogenous shear thinning hybrid-nanofluid: an experimental data base modeling. Numer Methods Partial Differ Equ. 2021;37(2):1234–49.

    Google Scholar 

  23. Kumar KG, Reddy MG, Aldalbahi A, Rahimi-Gorji M, Rahaman M. Application of different hybrid nanofluids in convective heat transport of Carreau fluid. Chaos, Solitons Fractals. 2020;141: 110350.

    Google Scholar 

  24. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, Vol. 1. IL: Argonne National Lab; 1995

  25. Elshazly E, Abdel-Rehim AA, El-Mahallawi I. 4E study of experimental thermal performance enhancement of flat plate solar collectors using MWCNT, Al2O3, and hybrid MWCNT/ Al2O3 nanofluids. Results Eng. 2022;16: 100723.

    CAS  Google Scholar 

  26. Cui F, Liu F, Tong Y, Wang S, Guo W, Han T, Qiu X. Energy and exergy assessment of evacuated tube solar collector using water, Fe3O4 nanofluid and Fe3O4/MWCNT hybrid nanofluid. Process Saf Environ Prot. 2022;163:236–43.

    CAS  Google Scholar 

  27. Zakaria IA, Mohamed WA, Azid NH, Suhaimi MA, Azmi WH. Heat transfer and electrical discharge of hybrid nanofluid coolants in a fuel cell cooling channel application. Appl Therm Eng. 2022;210:118369.

    CAS  Google Scholar 

  28. Kwon B, Maniscalco NI, Jacobi AM, King WP. High power density air-cooled microchannel heat exchanger. Int J Heat Mass Transf. 2018;118:1276–83.

    CAS  Google Scholar 

  29. Rahnama Z, Ansarifar GR. Nanofluid application for heat transfer, safety, and natural circulation enhancement in the NuScale nuclear reactor as a small modular reactor using computational fluid dynamic (CFD) modeling via neutronic and thermal-hydraulics coupling. Prog Nucl Energy. 2021;138: 103796.

    CAS  Google Scholar 

  30. Tariq HA, Shoukat AA, Hassan M, Anwar M. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. J Therm Anal Calorim. 2019;136:2171–82.

    CAS  Google Scholar 

  31. Eldabe NT, Moatimid GM, Abouzeid MY, ElShekhipy AA, Abdallah NF. A semianalytical technique for MHD peristalsis of pseudoplastic nanofluid with temperature-dependent viscosity: application in drug delivery system. Heat Transf Asian Res. 2019;49:1–17.

    Google Scholar 

  32. Ijaz S, Sadaf H, Iqbal Z. Remarkable role of nanoscale particles and viscosity variation in blood flow through overlapped atherosclerotic channel: a useful application in drug delivery. Arab J Sci Eng. 2019;44:6241–52.

    CAS  Google Scholar 

  33. Mekheimer KS, Hasona WM, Abo-Elkhair RE, Zaher AZ. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Phys Lett A. 2018;382(2–3):85–93.

    CAS  Google Scholar 

  34. Mokhosi SR, Mdlalose W, Nhlapo A, Singh M. Advances in the synthesis and application of magnetic ferrite nanoparticles for cancer therapy. Pharmaceutics. 2022;14:937.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong X, Qi Y, Wang X, Jiang R, Wang J, Fang Y, Gao J, Hwang KC. Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Prog Mater Sci. 2023;134: 101070.

    CAS  Google Scholar 

  36. Mousav SM, Esmaeilzadeh F, Wang XP. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J Therm Anal Calorim. 2019;2019:1–23.

    Google Scholar 

  37. Sahoo RR, Kumar V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int Commun Heat Mass Transf. 2020;111: 104451.

    CAS  Google Scholar 

  38. Sayed AY, Abdel-wahed MS. Entropy analysis for an MHD nanofluid with a microrotation boundary layer over a moving permeable plate. Eur Phys J Plus. 2020;135:106.

    CAS  Google Scholar 

  39. Kilic M, Ali HM. Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm Sci. 2019;23(5B):3165–73.

    Google Scholar 

  40. Devaki P, Venkateswarlu B, Srinivas S, Sreenadh S. MHD Peristaltic flow of a nanofluid in a constricted artery for different shapes of nanosized particles. Nonlinear Eng. 2020;9:51–9.

    Google Scholar 

  41. Alnahdi AS, Nasir S, Gul T. Blood-based ternary hybrid nanofluid flow through perforated capillary for the applications of drug delivery. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2134607.

    Article  Google Scholar 

  42. Ahmed Z, Nadeem S, Saleem S, Ellahi R. Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int J Numer Meth Heat Fluid Flow. 2019;29(12):4607–23.

    Google Scholar 

  43. Elsaid EM, Abdel Wahid TZ, Morad AM. Exact solutions of plasma flow on a rigid oscillating plate under the effect of an external non-uniform electric field. Results Phys. 2020;19:103554.

    Google Scholar 

  44. Elsaid EM, Ibrahim IE, Abdelwahid TZ. Kinetic and thermodynamic examinations for the unsteady couette flow problem of a plasma using the BGK cylindrical model. Chin J Phys. 2022;77:161–75.

    CAS  Google Scholar 

  45. Pandey R, Kumar M, Majdoubi J, Rahimi-Gorji M, Srivastav VK. A review study on blood in human coronary artery: numerical approach. Comput Methods Programs Biomed. 2020;187: 105243.

    PubMed  Google Scholar 

  46. Shahzad F, Jamshed W, Eid MR, Ibrahim RW, Aslam F, Isa SSPM, Guedri K. The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel. J Magn Magn Mater. 2023;568: 170320.

    CAS  Google Scholar 

  47. Sajid T, Pasha AA, Jamshed W, Shahzad F, Eid MR, Ibrahim RW, El Din SM. Radiative and porosity effects of trihybrid Casson nanofluids with Bödewadt flow and inconstant heat source by Yamada-Ota and Xue models. Alex Eng J. 2023;66:457–73.

    Google Scholar 

  48. Sajid T, Al Mesfer MK, Jamshed W, Eid MR, Danish M, Irshad K, Ibrahim RW, Batool S, El Din SM, Altamirano GC. Endo/exothermic chemical processes influences of tri-hybridity nanofluids flowing over wedge with convective boundary constraints and activation energy. Results Phys. 2023;51:106676.

    Google Scholar 

  49. Karmakar P, Ali A, Das S. Circulation of blood loaded with trihybrid nanoparticles via electro-osmotic pumping in an eccentric endoscopic arterial canal. Int Commun Heat Mass TransF. 2023;141: 106593.

    CAS  Google Scholar 

  50. Poonam A, Sharma BK, Kumawat C, Vafai K. Computational biomedical simulations of hybrid nanoparticles (Au–Al2O3/ blood-mediated) transport in a stenosed and aneurysmal curved artery with chemical physics letters. Chem Phys Lett. 2022;800: 139666.

    CAS  Google Scholar 

  51. Tang TQ, Rooman M, Shah Z, Jan MA, Vrinceanu N, Racheriu M. Computational study and characteristics of magnetized gold-blood Oldroyd-B nanofluid flow and heat transfer in stenosis narrow arteries. J Magn Magn Mater. 2023;569: 170448.

    CAS  Google Scholar 

  52. Waqas H, Farooq U, Hassan A, Liu D, Noreen S, Makki R, Imran M, Ali MR. Numerical and Computational simulation of blood flow on hybrid nanofluid with heat transfer through a stenotic artery: silver and gold nanoparticles. Results Phys. 2023;44: 106152.

    Google Scholar 

  53. Fangfang F, Sajid T, Jamshed W, Eid MR, Altamirano GC, Altaf I, Abd-Elmonem A, El Din SM. Thermal transport and characterized flow of trihybridity Tiwari and Das Sisko nanofluid via a stenosis artery: a case study. Case Stud Therm Eng. 2023;47: 103064.

    Google Scholar 

  54. Ali A, Jana RN, Das S. Significance of entropy generation and heat source: the case of peristaltic blood flow through a ciliated tube conveying Cu–Ag nanoparticles using Phan-Thien-Tanner model. Biomech Model Mechanobiol. 2021;20:2393–412.

    PubMed  Google Scholar 

  55. Dolui S, Bhaumik B, De S. Combined effect of induced magnetic field and thermal radiation on ternary hybrid nanofluid flow through an inclined catheterized artery with multiple stenosis. Chem Phys Lett. 2023;23: 140209.

    Google Scholar 

  56. Reza M, Rana A, Shit G. Thermo-fluidic transport of electromagnetohydrodynamic flow in a corrugated porous medium microchannel. Eur Phys J Plus. 2021;136(5):496.

    CAS  Google Scholar 

  57. Yang R, Fu L, Lin Y, Crosser O. Electroosmotic flow in micro channels. J Colloid Interface Sci. 2001;239:98–105.

    CAS  PubMed  Google Scholar 

  58. Akbar NS, Maraj EN, Noor NF, Habib MB. Exact solutions of an unsteady thermal conductive pressure driven peristaltic transport with temperature-dependent nanofluid viscosity. Case Stud Therm Eng. 2022;35: 102124.

    Google Scholar 

  59. Akbar NS, Ayub A, Butt AW. Carbon nanotube analysis for an unsteady physiological flow in a non-uniform channel of finite length. Eur Phys J Plus. 2017;132:177.

    Google Scholar 

  60. Elsaid EM, Abdel-wahed MS. Impact of hybrid nanofluid coolant on the boundary layer behavior over a moving cylinder: numerical case study. Case Stud Therm Eng. 2021;25: 100951.

    Google Scholar 

  61. Elsaid EM, Abdel-wahed MS. MHD mixed convection ferro Fe3O4/Cu-hybrid-nanofluid runs in a vertical channel. Chin J Phys. 2022;76:269–82.

    CAS  Google Scholar 

  62. Elsaid EM, Abedel-AaL EM. Darcy-forchheimer flow of a nanofluid over a porous plate with thermal radiation and brownian motion. J Nanofluid. 2023;12(1):55–64.

    Google Scholar 

  63. Elsaid EM, Abdel-wahed MS. Mixed convection hybrid-nanofluid in a vertical channel under the effect of thermal radiative flux. Case Stud Therm Eng. 2012;25: 100913.

    Google Scholar 

  64. Elsaid EM, AlShurafat KS. Impact of hall current and joule heating on a rotating hybrid nanofluid over a stretched plate with nonlinear thermal radiation. J Nanofluid. 2023;12(2):548–56.

    Google Scholar 

  65. Munawar S, Saleem N. Mixed convective cilia triggered stream of magneto ternary nanofluid through elastic electroosmotic pump: a comparative entropic analysis. J Mol Liq. 2022;352: 118662.

    CAS  Google Scholar 

  66. Al Oweidi KF, Shahzad F, Jamshed W, Usman RW, Ibrahim RW, Tag El Din EM, AlDerea AM. Partial differential equations of entropy analysis on ternary hybridity nanofluid flow model via rotating disk with hall current and electromagnetic radiative influences. Sci Rep. 2022;12(1):20692.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Researchers would like to thank the Deanship of Scientific Research, Qassim University, for funding the publication of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. M. Sayed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsaid, E.M., Sayed, A.A.M. & Abdel-wahed, M.S. Electromagnetohydrodynamic unsteady blood flow with ternary nanoparticles in a vertical irregular peristaltic flow: an exact treatment. J Therm Anal Calorim 148, 14163–14181 (2023). https://doi.org/10.1007/s10973-023-12598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12598-z

Keywords

Navigation