Skip to main content
Log in

Thermal analysis of an unsteady compressible flow in an asymmetric channel with joule heating: a finite difference approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis of compressible flow under peristalsis is stimulated by its extensive utility in geophysics, thermal storage devices and in other industrial operations. With regard to these utilities, this work is aimed at heat transfer analysis of unsteady compressible flow of an electrically conducting viscous fluid under peristalsis. Considerations are made for an asymmetric channel with velocity and thermal slip conditions. Thermal analysis has been taking into account in the presence of viscous dissipation and joule heating effects. Mass and momentum conservation laws, equation of state and energy equation are employed to numerically model the current problem. Explicit finite difference method is used to numerically solve the resulting nonlinear partial differential equations. Graphical representations are used to show the effect of pertinent parameters on axial velocity, dimensionless temperature and heat transport rate. It has been demonstrated that the magnetic field trims down the fluid’s velocity. Also, higher Prandtl number exhibit lower thermal diffusivity which in turn causes the fluid temperature to fall. In general, the temperature rises along with the Mach number. This is because, in accordance with the ideal gas law, the compressibility effects increase the pressure and density, which in turn raises the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\left( {x,y} \right)\) :

Coordinate axis

\(\left( {u,v} \right)\) :

Velocity components

\(c\) :

Speed of wave

\(a*\) :

Speed of sound

\(a_{1}\) :

Wave amplitude on upper wall

\(a_{2}\) :

Wave amplitude on lower wall

\(p_{{\text{c}}}\) :

Reference pressure

\(p\) :

Pressure

\(t\) :

Time

\(T\) :

Temperature

\(S\) :

Extra stress tensor

\(B_{0}\) :

Magnetic flux density

\(J\) :

Electric current vector

\(k_{{\text{c}}}\) :

Compressibility of the liquid

\(K_{{\text{n}}}\) :

Knudsen number

\({\text{R}}\) :

Reynolds number

\(H\left( y \right)\) :

Magnetic number

\(M\) :

Magnetic field parameter

\({\text{Pr}}\) :

Prandtl number

\({\text{Ma}}\) :

Mach number

\(\rho\) :

Density

\(\rho_{0}\) :

Density at reference pressure

\(\lambda\) :

Wavelength

\(\mu\) :

Dynamic viscosity

\(\phi\) :

Phase difference

\(\theta\) :

Dimensionless temperature

\(\sigma\) :

Electric conductivity of the fluid

\(\alpha\) :

Wave number

\(\beta\) :

Thermal slip parameter

\(\varphi\) :

Viscous dissipation

\(\chi\) :

Compressibility parameter

References

  1. Javed M. A mathematical framework for peristaltic mechanism of non-Newtonian fluid in an elastic heated channel with Hall effect. Multidiscip Model Mater. 2021;17(2):360–72.

    CAS  Google Scholar 

  2. Vaidya H, Makinde OD, Choudhari R, Prasad KV, Khan SU, Vajravelu K. Peristaltic flow of non-Newtonian fluid through an inclined complaint nonlinear tube: application to chyme transport in the gastrointestinal tract. Eur Phys J. 2020;135(11):1–15.

    Google Scholar 

  3. Li M, Brasseur JG. Non-steady peristaltic transport in finite-length tubes. J Fluid Mech. 1993;248:129–51.

    Article  CAS  Google Scholar 

  4. Pandey SK, Tripathi D. Unsteady model of transportation of Jeffrey-fluid by peristalsis. Int J Biomath. 2010;3(04):473–91.

    Article  Google Scholar 

  5. Ramanamurthy JV, Prasad KM, Narla VK. Unsteady peristaltic transport in curved channels. Phys Fluids. 2013;25(9):91903–22.

    Article  Google Scholar 

  6. Priam SS, Nasrin R. Numerical appraisal of time-dependent peristaltic duct flow using Casson fluid. Int J Mech. 2022;233:107676–91.

    Article  Google Scholar 

  7. Bilal M, Javid K, Ali N. Unsteady flow of hybrid fluid via peristaltic pumping in wavy micro-tube under electric and magnetic field effects: an application of Hall device and slip boundary. Proc Inst Mech Eng. 2023. https://doi.org/10.1177/0954408923115751.

    Article  Google Scholar 

  8. Aarts AC, Ooms G. Net flow of compressible viscous liquids induced by travelling waves in porous media. J Eng Math. 1998;34:435–50.

    Article  Google Scholar 

  9. Eldesoky IM, Nayel MS, Galal AA, Raslan HM. Combined effects of space porosity and wall properties on a compressible Maxwell fluid with MHD peristalsis. SN Appl. 2020;2(12):2118–31.

    Article  Google Scholar 

  10. Abdelsalam SI, Vafai K. Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel. Eur J Mech. 2017;65:398–411.

    Article  Google Scholar 

  11. Eldesoky IM, Nayel MS, Galal AA, Raslan HM. Impact of compliant wall properties on peristaltic transport of a compressible non-Newtonian Maxwellian fluid through axisymmetric cylindrical tube. J Phys Conf Ser. 2021;1970(1):12001–22.

    Article  CAS  Google Scholar 

  12. Rafaqat R, Khan AA. Effects of magnetic field and porosity on compressible flow in an asymmetric channel. Int J Mod Phys B. 2023. https://doi.org/10.1142/S0217979224502461.

    Article  Google Scholar 

  13. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids. 1965;8(12):2182–9.

    Article  Google Scholar 

  14. Hayat T, Muhammad K, Momani S. Melting heat and viscous dissipation in flow of hybrid nanomaterial: a numerical study via finite difference method. J Therm Anal Calorim. 2022;147:6393–401.

    Article  CAS  Google Scholar 

  15. Abbasi A, Zaman A, Arooj S, Khan MI, Khan SU, Farooq W, Muhammad T. A bioconvection model for viscoelastic nanofluid confined by tapered asymmetric channel: implicit finite difference simulations. J BioPhys. 2021;47:499–520.

    CAS  Google Scholar 

  16. MacCormack RW. A numerical method for solving the equations of compressible viscous flow. AIAA. 1982;20(9):1275–81.

    Article  Google Scholar 

  17. Hu G, Grossman B, Steinhoff J. Numerical method for vorticity confinement in compressible flow. AIAA. 2002;40(10):1945–53.

    Article  CAS  Google Scholar 

  18. Mekheimer KS, Abdel-Wahab AN. Effect of wall compliance on compressible fluid transport induced by a surface acoustic wave in a microchannel. Numer Methods Partial Differ Equ. 2011;27(3):621–36.

    Article  Google Scholar 

  19. Rafaqat R, Khan AA, Zaman A. Unsteady radiative-convective flow of a compressible fluid: a numerical approach. Can J Phys. 2022. https://doi.org/10.1139/cjp-2022-0154.

    Article  Google Scholar 

  20. Turkyilmazoglu M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. J Therm Anal Calorim. 2021;143(5):3731–9.

    Article  CAS  Google Scholar 

  21. Gul T, Nasir S, Berrouk AS, Raizah Z, Alghamdi W, Ali I, Bariq A. Simulation of the water-based hybrid nanofluids flow through a porous cavity for the applications of the heat transfer. Sci Rep. 2023;13(1):7009–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turkyilmazoglu M. Heat transport in shear-driven flow with axial conduction. J Taiwan Inst Chem Eng. 2021;123:96–103.

    Article  CAS  Google Scholar 

  23. Aziz T, Haq RU, Sadiq MA, Bahaidarah HM. Thermal performance of MHD natural convection flow in a concentric semi-circle porous enclosure having corrugated radius. Int Commun Heat Mass Transf. 2023;146:106905–15.

    Article  CAS  Google Scholar 

  24. Abbasi FM, Hayat T, Alsaedi A. Peristaltic transport of magneto-nanoparticles submerged in water: model for drug delivery system. Physica E Low Dimens Syst Nanostruct. 2015;68:123–32.

    Article  CAS  Google Scholar 

  25. Rashid M, Ansar K, Nadeem S. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Physica A. 2020;553:123979–92.

    Article  Google Scholar 

  26. Bhatti MM, Sait SM, Ellahi R, Sheremet MA, Oztop H. Thermal analysis and entropy generation of magnetic Eyring-Powell nanofluid with viscous dissipation in a wavy asymmetric channel. Int J Numer Method Heat Fluid Flow. 2023;33(5):1609–36.

    Article  Google Scholar 

  27. Abd-Alla AM, Thabet EN, Bayones FS. Numerical solution for MHD peristaltic transport in an inclined nanofluid symmetric channel with porous medium. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-07193-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bhatti MM, Ellahi R, Zeeshan A. Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J Mol Liq. 2016;222:101–8.

    Article  CAS  Google Scholar 

  29. Abbasi FM, Shehzad SA. Heat transfer analysis for peristaltic flow of Carreau-Yasuda fluid through a curved channel with radial magnetic field. Int J Heat Mass Transf. 2017;115:777–83.

    Article  Google Scholar 

  30. Turkyilmazoglu M. Unsteady MHD flow with variable viscosity: applications of spectral scheme. Int J Therm Sci. 2010;49(3):563–70.

    Article  Google Scholar 

  31. Sucharitha G, Lakshminarayana P, Sandeep N. Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int J Mech Sci. 2017;131:52–62.

    Article  Google Scholar 

  32. Hayat T, Alsaedi A, Rafiq M, Ahmad B. Joule heating and thermal radiation effects on peristalsis in curved configuration. Res Phys. 2016;6:1088–95.

    Google Scholar 

  33. Ahmed R, Ali N, Khan SU, Tlili I. Numerical simulations for mixed convective hydromagnetic peristaltic flow in a curved channel with joule heating features. AIP Adv. 2020;10(7):75303–15.

    Article  CAS  Google Scholar 

  34. Abbasi A, Mabood F, Farooq W, Khan SU. Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel. Int Commun. 2021;123:105183–94.

    CAS  Google Scholar 

  35. Reddy KV, Reddy MG, Makinde OD. Analysis of Joule heating and chemical reaction effects in electroosmosis peristaltic transport of couple-stress and micropolar fluids. Heat Transf. 2022;51(6):4992–5014.

    Article  Google Scholar 

Download references

Funding

No funding, grants or other support was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by RR and AAK. The first draft of the manuscript was written by RR and reviewed by AAK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rida Rafaqat.

Ethics declarations

Conflict of interest

There are no declared competing interests of the authors that are pertinent to the subject matter of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafaqat, R., Khan, A.A. Thermal analysis of an unsteady compressible flow in an asymmetric channel with joule heating: a finite difference approach. J Therm Anal Calorim 148, 14243–14252 (2023). https://doi.org/10.1007/s10973-023-12585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12585-4

Keywords

Navigation