Skip to main content
Log in

Decomposition mechanism and kinetic investigation of novel urea burning rate suppressants in AP/HTPE propellants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combination of urea with ammonium perchlorate (AP) bonding agents displayed superior efficiency in AP/hydroxyl-terminated polyether (HTPE) propellants in our previous work. However, the decomposition mechanism and kinetic investigation of urea-based burning rate suppressants (BRSs) is not enough. The thermogravimetry and differential scanning calorimetry (TG-DSC) have been used to study their influence on AP and HTPE binders. The activation energy dependent on the conversion rate was estimated based on the DSC curves obtained at different heating rates. It was found that with lower activation energies, the BRSs have a better effect on the reduction of burning rates of propellants. The thermogravimetry-Fourier transform infrared spectrometer curves showed that, compared with Schiff base group in BRS-3, the cyano groups in BRS-1 and BRS-2 are easier to generate ammonia so that they had better deceleration effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang M, Zhao F, Li H, Jiang Y, Yang Y, Hou X, Zhang J, Li N. Effect of novel graphene-based ferrocene nanocomposites on thermal decomposition of AP. Inorg Chim Acta. 2022;530: 120672.

    Article  CAS  Google Scholar 

  2. Rotariu T, Pulpea BG, Dîrloman FM, Diacon A, Rusen E, Toader G, Zvîncu ND, Iordache TV, Botis RH. The influence of potassium salts phase stabilizers and binder matrix on the properties of novel composite rocket propellants based on ammonium nitrate. Materials. 2022;15(24):8960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao C, Liu H, Zhang D, Zhu K, Li A, Wang L, Hu H. Investigation on the decomposition mechanism and kinetic behavior of 5-aminotetrazole with metal oxide produced by added coolants. Fuel. 2021;303: 121315.

    Article  CAS  Google Scholar 

  4. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.

    Article  CAS  Google Scholar 

  5. Huang Y, Peng R, Jin B. An efficient strontium-based combustion inhibitor of ammonium perchlorate with a 2D-MOF structure. New J Chem. 2021;45:11068–74.

    Article  CAS  Google Scholar 

  6. Jacobs PWM, Whitehead HM. Decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;69:551–90.

    Article  CAS  Google Scholar 

  7. Glaskova AP Three possible ways of inhibition of the ammoniumperchlorate combustion process. 12th aerospace sciences meeting. 1974; 74–120.

  8. Kalman J. Are all solid propellant burning rate modifiers catalysts? Propellants Explos Pyrotech. 2022. https://doi.org/10.1002/prep.202200148.

    Article  Google Scholar 

  9. Dey A, Ghorpade VG, Kumar A, Gupta M. Biuret: a potential burning rate suppressant in ammonium chlorate (VII) based composite propellants. Cent Eur J Energ Mater. 2014;11(1):3–13.

    CAS  Google Scholar 

  10. Vernacchia MT, Mathesius KJ, Hansman RJ. Slow-burn ammonium perchlorate propellants with oxamide: burn rate model, testing, and applications. J Propul Power. 2021;37:792–800.

    Article  CAS  Google Scholar 

  11. Trache D, Maggi F, Palmucci I, DeLuca LT, Khimeche K, Fassina M, Dossi S, Colombo G. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arabian J Chem. 2015;12:3639–51.

    Article  Google Scholar 

  12. Williams GK, Palopoli SF, Brill TB. Thermal decomposition of energetic materials 65. conversion of insensitive explosives (NTO ANTA) and related compounds to polymeric melon-like cyclic azine burn-rate suppressants. Combust Flame. 1994;98(3):197–204.

    Article  Google Scholar 

  13. Song S, Wang Y, He W, Wang K, Yan M, Yan Q, Zhang Q. Melamine N-oxide based self-assembled energetic materials with balanced energy & sensitivity and enhanced combustion behavior. Chem Eng J. 2020;395: 125114.

    Article  CAS  Google Scholar 

  14. Xu S, Pang AM, Wang Y, Pan XZ, Li SW, Li HT, Kong J. A review on the use of burning rate suppressants in ap-based composite propellants. Propellants Explos Pyrotech. 2021. https://doi.org/10.1002/prep.202000327.

    Article  Google Scholar 

  15. Ye P, Zhai H, Li Y, Zhu W, Yang G, Guo C. 2,6-Diamino-3,5-dinitropyrazine-1-oxide coated ammonium perchlorate to build core-shell structure for enhanced safety and thermal decomposition performance. J Anal Appl Pyrolysis. 2022;163: 105487.

    Article  CAS  Google Scholar 

  16. Yang F, Pei J, Zhao H. First-principles investigation of graphene and Fe2O3 catalytic activity for decomposition of ammonium perchlorate. Langmuir. 2022;38:3844–51.

    Article  PubMed  Google Scholar 

  17. Shi J, Xing X, Wang H, Ge L, Sun H, Lv B. Oxygen vacancy enriched Cu-WO3 hierarchical structures for the thermal decomposition of ammonium perchlorate. Inorg Chem Front. 2022;9:136–45.

    Article  CAS  Google Scholar 

  18. Liu X, Feng H, Li Y, Ma X, Yan Q. Effects of high-energy multicore ferrocene-based catalysts on the thermal decomposition of ammonium perchlorate. Appl Organomet Chem. 2022. https://doi.org/10.1002/aoc.6605.

    Article  Google Scholar 

  19. El-Basuony SA, Sadek MA, Wafy TZ, Mostafa HE. Generating Plateau Burning Segments for Composite Solid Rocket Propellants. Propellants Explos Pyrotech. 2019;45:112–7.

    Article  Google Scholar 

  20. Demko AR, Lormand B, Doorenbos Z. Tailoring binder melting temperature to study the binder melt layer flow in ammonium perchlorate composite propellants. Combust Sci Technol. 2019;193:931–43.

    Article  Google Scholar 

  21. Nagendra K, Vijay C, Ramakrishna PA. Binder melt: Quantification using SEM/EDS and its effects on composite solid propellant combustion. Proc Combust Inst. 2019;37:3151–8.

    Article  CAS  Google Scholar 

  22. Chalghoum F, Trache D, Benziane M, Chelouche S. Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant. J Therm Anal Calorim. 2022;147:11507–34.

    Article  CAS  Google Scholar 

  23. Benhammada A, Trache D. Thermal decomposition of energetic materials usingTG-FTIR and TG-MS: a state-of-the-art review. Appl Spectrosc Rev. 2020;55(8):724–77.

    Article  CAS  Google Scholar 

  24. Xu S, Pang A, Kong J. Development of novel urea burning rate suppressants in AP/HTPE propellants with superior efficiency and desirable mechanical performance. Combust Sci Technol. 2022. https://doi.org/10.1080/00102202.2022.2104609.

    Article  Google Scholar 

  25. Dave P, Sirach R, Thakkar R, Deshpande MP, Badgujar DM. Cobalt copper zinc ferrite: an efficient catalyst for the thermal decomposition of ammonium perchlorate. Combust Sci Technol. 2023;195(12):2732–49.

    Article  CAS  Google Scholar 

  26. Dave PN, Sirach R. NiZnFe2O4: a potential catalyst for the thermal decomposition of AP and burn rate modifier for AP/HTPB based propellants. J Therm Anal Calorim. 2022;147:10999–1011.

    Article  CAS  Google Scholar 

  27. Bekhouche S, Trache D, Abdelaziz A, Tarchoun AF, Boukeciat H. Effect of fluorine-containing thermite coated with potassium perchlorate on the thermal decomposition behavior and kinetics of ammonium perchlorate. Thermochim Acta. 2023;720: 179413.

    Article  CAS  Google Scholar 

  28. Chalghoum F, Trache D, Benziane M, Benhammada A. Effect of micro- and nano-CuO on the thermal decomposition kinetics of high-performance aluminized composite solid propellants containing complex metal hydrides. FirePhysChem. 2022;2:36–49.

    Article  Google Scholar 

  29. Mezroua A, Hamada RA, Brahmine KS, Abdelaziz A, Tarchoun AF, Boukeciat H, Bekhouche S, Bessa W, Benhammada A, Trache D. Unraveling the role of ammonium perchlorate on the thermal decomposition behavior and kinetics of NC/DEGDN energetic composite. Thermochim Acta. 2022;716: 179305.

    Article  CAS  Google Scholar 

  30. Tischer S, Bornhorst M, Amsler J, Schoch G, Deutschmann O. Thermodynamics and reaction mechanism of urea decomposition. Phys Chem Chem Phys. 2019;21:16785–97.

    Article  CAS  PubMed  Google Scholar 

  31. Sun Y-L, Li S-F, Ding D-H. Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim. 2006;86(2):497–503.

    Article  CAS  Google Scholar 

  32. Dave PN, Sirach R, Thakkar R. Thermal decomposition and kinetic investigation of AP and AP based composite solid propellant in the presence of nickel ferrite additive. J Mater Res Technol. 2022;19:4183–96.

    Article  CAS  Google Scholar 

  33. Yang M, Chen X, Yuan B, Wang Y, Rangwala AS, Cao H, Niu Y, Zhang Y, Fan A, Yin S. Inhibition effect of ammonium dihydrogen phosphate on the thermal decomposition characteristics and thermal sensitivity of ammonium nitrate. J Anal Appl Pyrolysis. 2018;134:195–201.

    Article  CAS  Google Scholar 

  34. Li W, Ye P, Guo C, Zhu W, Jin D. Design and preparation of core-shell AP@HNS composites with high safety and excellent thermal decomposition performance. RSC Adv. 2022;12:15329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Li Y, Ma X. Simple synthesis of energetic ferrocene-based coordination derivatives as attractive multifunctional catalysts for the thermal decomposition of ammonium perchlorate. Appl Organomet Chem. 2022. https://doi.org/10.1002/aoc.6890.

    Article  Google Scholar 

  36. Luo T, Wang Y, Huang H, Shang F, Song X. An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties. Nanomaterials. 2019;9:854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei R, Huang S, Wang Z, Wang C, Zhou T, He J, Yuen R, Wang J. Effect of plasticizer dibutyl phthalate on the thermal decomposition of nitrocellulose. J Therm Anal Calorim. 2018;134:953–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analyses were performed by SX, and AP. The first draft of the manuscript was written by SX and JK, and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jie Kong.

Ethics declarations

Conflict of interest

There are no conflicts of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Pang, A. & Kong, J. Decomposition mechanism and kinetic investigation of novel urea burning rate suppressants in AP/HTPE propellants. J Therm Anal Calorim 148, 12811–12820 (2023). https://doi.org/10.1007/s10973-023-12558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12558-7

Keywords

Navigation