Skip to main content
Log in

Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current research work, the potential of lithium aluminum hydride (LiAlH4), as an energetic fuel and efficient chlorine scavenger, for improving the performance and reducing the negative environmental impacts of composite solid propellants (CSPs) containing ammonium perchlorate as oxidizer, aluminum as fuel, and hydroxyl-terminated polybutadiene as binder (AP/HTPB/Al) was investigated. Three CSP formulations, i.e., AP/HTPB/Al, AP/HTPB/LiAlH4, and AP/HTPB/LiAlH4 + Al, were prepared and characterized using infrared spectroscopic method, differential scanning calorimeter (DSC), and thermogravimetry. The FTIR results revealed that the introduction of LiAlH4 did not alter the chemical structure of the baseline propellant. DSC measurements demonstrated that the three prepared propellant samples displayed a similar thermal decomposition behavior with an increase in thermal decomposition temperatures as the heating rate increased. In addition, an enhanced heat release was found for the complex metal hydride-based propellant samples compared to the pure aluminum-based propellant. Moreover, the deconvolution of the exothermic process related to the main decomposition of LiAlH4-based propellants highlighted a novel exothermic behavior assigned to the interaction of AP-complete dissociation species and LiAlH4 dehydrogenation products. Kinetic modeling performed on DSC data determined at various heating rates using isoconversional methods showed a diminution in the activation energy (Ea) of the propellant that contains LiAlH4, thus highlighting its excellent catalytic effect on both decomposition stages of the AP/HTPB/Al propellant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ruesch M, Mathews GC, Blaisdell MG, Son SF, Goldenstein CS, editors. Scanned-Wavelength-Modulation Spectroscopy in the Mid-Infrared for Measurements of Temperature and CO in Aluminized Composite Propellant Flames. AIAA Scitech 2020 Forum; 2020.

  2. Su W, Wang N, Li J, Zhao Y, Yan M. Improved method of measuring pressure coupled response for composite solid propellants. J Sound Vib. 2014;333(8):2226–40.

    Article  Google Scholar 

  3. Shioya S, Kohga M, Naya T. Burning characteristics of ammonium perchlorate-based composite propellant supplemented with diatomaceous earth. Combust Flame. 2014;161(2):620–30.

    Article  CAS  Google Scholar 

  4. Terry BC, Sippel TR, Pfeil MA, Gunduz IE, Son SF. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy. J Hazard Mater. 2016;317:259–66.

    Article  CAS  PubMed  Google Scholar 

  5. Gadiot G, Mul J, Meulenbrugge J, Korting P, Schnorkh A, Schöyer H. New solid propellants based on energetic binders and HNF. Acta Astronaut. 1993;29(10–11):771–9.

    Article  Google Scholar 

  6. Hussien M. Development and thermo-analytical studies of new environmentally friendly, high-performance and stable solid propellant formulations based on new high-energy dense oxidizers: Doctoral desertation, Ludwig-Maximilians-Universität München; 2018.

  7. Yuan J, Liu J, Zhou Y, Wang J, Xv T. Aluminum agglomeration of AP/HTPB composite propellant. Acta Astronaut. 2019;156:14–22.

    Article  CAS  Google Scholar 

  8. Yavor Y, Gany A, editors. Effect of nickel coating on aluminum combustion and agglomeration in solid propellants. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2008.

  9. Lal C, Sridharan P, Krishnaraj K, Krishnamoorthy P. Investigation of slag accumulation in solid rocket motors. AIAA Paper. 2010(2010–6753).

  10. Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT. Recent advances in new oxidizers for solid rocket propulsion. Green Chem. 2017;19(20):4711–36.

    Article  CAS  Google Scholar 

  11. Larsson A, Wingborg N. Green propellants based on ammonium dinitramide (ADN). In: Hall J, editor. Chapter 7 in advances in spacecraft technologies, INtech. 2011. p. 139–56

  12. Maggi F, Zadra F. Combustion of nanoaluminum and magnesium in fuel-rich propellants. Propellants Explos Pyrotech. 2020;45(5):724–9.

    Article  CAS  Google Scholar 

  13. Shark S, Sippel T, Son S, Heister S, Pourpoint T, editors. Theoretical performance analysis of metal hydride fuel additives for rocket propellant applications. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2011.

  14. Maggi F, Gariani G, Galfetti L, DeLuca LT. Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int J Hydrog Energy. 2012;37(2):1760–9.

    Article  CAS  Google Scholar 

  15. Barkley S, Zhu K, Lynch J, Ballestero M, Michael J, Sippel TR, editors. Microwave-supported plasma combustion enhancement of composite solid propellants using alkali metal dopants. 54th AIAA Aerospace Sciences Meeting; 2016.

  16. Chalghoum F, Trache D, Maggi F, Benziane M. Effect of complex metal hydrides on the elimination of hydrochloric acid exhaust products from high-performance composite solid propellants: a theoretical analysis. Propellants Explos Pyrotech. 2020;45(8):1204–15.

    Article  CAS  Google Scholar 

  17. Corpening JH, Palmer R, Heister SD, Rusek JJ. Combustion of advanced non-toxic hybrid propellants. Int J Altern Propul. 2007;1(2–3):154–73.

    Article  CAS  Google Scholar 

  18. Larson D, Boyer E, Wachs T, Kuo K, DeSain J, Curtiss T et al., editors. Characterization of the performance of paraffin/LiAlH4 solid fuels in a hybrid rocket system. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2011.

  19. DeSain JD, Curtiss TJ, Cohen RB, Brady BB, Frolik SA. Testing of LiAlH4 as a potential additive to paraffin wax hybrid rocket fuel: AEROSPACE CORP EL SEGUNDO CA2007.

  20. Shark SC. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants. West Lafayette: Purdue University; 2014.

    Google Scholar 

  21. Vyazovkin S, Wight CA. Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements. Anal Chem. 2000;72(14):3171–5.

    Article  CAS  PubMed  Google Scholar 

  22. Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K, Mezroua A. Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim Acta. 2019;673:78–91.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  24. Vyazovkin S. Two types of uncertainty in the values of activation energy. J Therm Anal Calorim. 2001;64(2):829–35.

    Article  CAS  Google Scholar 

  25. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  26. Vyazovkin S. Isoconversional kinetics of polymers: the decade past. Macromol Rapid Commun. 2017;38(3):1600615.

    Article  CAS  Google Scholar 

  27. Lawrence AR, Laktas JM, Place GJ, Jelliss PA, Buckner SW, Sippel TR. Organically-capped, nanoscale alkali metal hydride and aluminum particles as solid propellant additives. J Propuls Power. 2019;35:1–11.

    Article  Google Scholar 

  28. Pang W-Q, DeLuca LT, Fan X-Z, Glotov OG, Wang K, Qin Z, et al. Combustion behavior of AP/HTPB/Al composite propellant containing hydroborate iron compound. Combust Flame. 2020;220:157–67.

    Article  CAS  Google Scholar 

  29. Liu L, Li J, Zhang L, Tian S. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant. J Hazard Mater. 2018;342:477–81.

    Article  CAS  PubMed  Google Scholar 

  30. Chelouche S, Trache D, Tarchoun AF, Khimeche K, Mezroua A. Compatibility of nitrocellulose with aniline-based compounds and their eutectic mixtures. J Therm Anal Calorim. 2019;141:1–15.

    Google Scholar 

  31. Nguyen TT, Phan DN, Nguyen DC, Do VT, Bach LG. The chemical compatibility and adhesion of energetic materials with several polymers and binders: an experimental study. Polymers. 2018;10(12):1396.

    Article  PubMed Central  CAS  Google Scholar 

  32. Pang W, Wang K, DeLuca LT, Trache D, Fan X, Li J, et al. Experiments and simulations on interactions between 2, 3-bis (hydroxymethyl)-2, 3-dinitro-1, 4-butanediol tetranitrate (DNTN) with some energetic components and inert materials. FirePhysChem. 2021;1(3):166–73.

    Article  Google Scholar 

  33. McBride BJ, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications II. Users manual and program description. 2; Users Manual and Program Description. 1996.

  34. Gordon S, McBride BJ. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 2. User’s Manual and Program Description. NAZA Reference Publication. 1996.

  35. Trache D, Maggi F, Palmucci I, DeLuca LT, Khimeche K, Fassina M, et al. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem. 2019;12(8):3639–51.

    Article  CAS  Google Scholar 

  36. Naya T, Kohga M. Thermal decomposition behaviors and burning characteristics of AN/nitramine-based composite propellant. J Energ Mater. 2015;33(2):73–90.

    Article  CAS  Google Scholar 

  37. Tarchoun AF, Trache D, Klapötke TM, Chelouche S, Derradji M, Bessa W, et al. A promising energetic polymer from posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromol Chem Phys. 2019;220(22):1900358.

    Article  CAS  Google Scholar 

  38. Menzinger M, Wolfgang R. The meaning and use of the Arrhenius activation energy. Angew Chem Int Ed Engl. 1969;8(6):438–44.

    Article  CAS  Google Scholar 

  39. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132(3):1601–15.

    Article  CAS  Google Scholar 

  40. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48.

    Article  CAS  Google Scholar 

  41. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  42. Coats AW, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  43. Senum G, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11(3):445–7.

    Article  Google Scholar 

  44. Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Biores Technol. 2015;196:136–44.

    Article  CAS  Google Scholar 

  45. Rajeshwari P, Dey T. Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J Therm Anal Calorim. 2016;125(1):369–86.

    Article  CAS  Google Scholar 

  46. Cai J, Chen S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2009;30(13):1986–91.

    Article  CAS  PubMed  Google Scholar 

  47. Vyazovkin S. Some basics en route to isoconversional methodology. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015. p. 1–25.

    Google Scholar 

  48. Wang L, Aguey-Zinsou K-F. Synthesis of LiAlH4 nanoparticles leading to a single hydrogen release step upon Ti coating. Inorganics. 2017;5(2):38.

    Article  CAS  Google Scholar 

  49. Liu X, McGrady GS, Langmi HW, Jensen CM. Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. J Am Chem Soc. 2009;131(14):5032–3.

    Article  CAS  PubMed  Google Scholar 

  50. Wietelmann U. Applications of lithium-containing hydrides for energy storage and conversion. Chem Ing Tec. 2014;86(12):2190–4.

    Article  CAS  Google Scholar 

  51. Wang Q, Wang L, Zhang X, Mi Z. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172(2–3):1659–64.

    Article  CAS  PubMed  Google Scholar 

  52. Varin R, Zbroniec L. Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including long-term storage and moisture effects. J Alloy Compd. 2010;504(1):89–101.

    Article  CAS  Google Scholar 

  53. Fang H, Guo X, Shi L, Han K, Nie J, Wang S et al. The effects of TiH2 on the thermal decomposition performances of ammonium perchlorate-based molecular perovskite (DAP-4). J Energ Mater. 2021;1–13. https://doi.org/10.1080/07370652.2021.1916128.

  54. Chelouche S, Trache D, Benayachi ZI, Tarchoun AF, Khimeche K, Mezroua A. A new procedure for stability control of homogeneous solid propellants by combination of vacuum stability test, FTIR and PCA. Propellants Explos Pyrotech; 2020

  55. Kishore K, Rajalingam P. Polymer–filler interactions in hydroxy-terminated polybutadiene–ammonium perchlorate system in the presence of a bonding agent. J Appl Polym Sci. 1989;37(10):2845–53.

    Article  CAS  Google Scholar 

  56. Lv X, Zha M, Ma Z, Zhao F, Xu S, Xu H. Fabrication, characterization, and combustion performance of Al/HTPB composite particles. Combust Sci Technol. 2017;189(2):312–21.

    Article  CAS  Google Scholar 

  57. Wang Y, Zeng X, Li H, Guo J. Structural characterization of hydroxyl-terminated polybutadiene-bound 2, 2-thiobis (4-methyl-6-tert-butylphenol) and its thermo-oxidative aging resistance for natural rubber vulcanizates. J Macromol Sci Part B. 2012;51(10):1904–20.

    Article  CAS  Google Scholar 

  58. Zhang L, Ping L, Xuanhui Q. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4. J Alloy Compd. 2010;508(1):119–28.

    Article  CAS  Google Scholar 

  59. Vargeese AA. A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants. Combust Flame. 2016;165:354–60.

    Article  CAS  Google Scholar 

  60. Akhter MZ, Hassan M. Characterisation of paraffin-based hybrid rocket fuels loaded with nano-additives. J Exp Nanosci. 2018;13(sup1):S31–44.

    Article  CAS  Google Scholar 

  61. Rather S-u, So CS, Hwang SW, Kim AR, Nahm KS. Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int J Hydrog Energy. 2009;34(21):8937–43.

    Article  CAS  Google Scholar 

  62. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Hiedelberg: Springer; 2015.

    Book  Google Scholar 

  63. Šimon P. Isoconversional methods. J Therm Anal Calorim. 2004;76(1):123–32.

    Article  Google Scholar 

  64. Gao X, Jiang L, Xu Q. Experimental and theoretical study on thermal kinetics and reactive mechanism of nitrocellulose pyrolysis by traditional multi kinetics and modeling reconstruction. J Hazardous Mater. 2020;386:121645.

    Article  CAS  Google Scholar 

  65. Chen J, Wang Y, Lang X, Fan S. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: thermal conversion characteristics, kinetics, and thermodynamics. Biores Technol. 2017;243:37–46.

    Article  CAS  Google Scholar 

  66. Celina M, Minier L, Assink R. Development and application of tools to characterize the oxidative degradation of AP/HTPB/Al propellants in a propellant reliability study. Thermochim Acta. 2002;384(1–2):343–9.

    Article  CAS  Google Scholar 

  67. Lee I, editor. Thermal response of AP and aluminized AP/HTPB-based propellants with varying composition. 35th Joint Propulsion Conference and Exhibit; 1999.

  68. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JdR, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Thermal Anal Calorim. 2004;77(3):803–13.

    Article  CAS  Google Scholar 

  69. Z-u-d B, Malik AQ. An investigation of thermal decomposition kinetics of nano zinc oxide catalyzed composite propellant. Combust Sci Technol. 2015;187(8):1295–315.

    Article  CAS  Google Scholar 

  70. Chaturvedi S, Dave PN, Patel NN. Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl Nanosci. 2015;5(1):93–8.

    Article  CAS  Google Scholar 

  71. Kubota N. Propellants and explosives: thermochemical aspects of combustion. Hoboken: Wiley; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fateh Chalghoum contributed to conceptualization, methodology, investigation, and writing—original draft. Djalal Trache contributed to supervision, conceptualization, methodology, resources, and writing—review and editing. Mokhtar Benziane and Salim Chelouche performed data curation and writing—review and editing.

Corresponding author

Correspondence to Djalal Trache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalghoum, F., Trache, D., Benziane, M. et al. Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant. J Therm Anal Calorim 147, 11507–11534 (2022). https://doi.org/10.1007/s10973-022-11355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11355-y

Keywords

Navigation