Skip to main content
Log in

A review of recent advancements in the crystallization fouling of heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A wide range of industrial processes (i.e., evaporation and condensation in desalination process, steam power plant, solar plant, etc.) involve heat transfer among the fluids. During the process of  evaporative and cooling heat transfer, undesirable materials from the fluids accumulate on the surfaces, which critically reduces the performance of heat exchangers and creates one of the biggest challenges in energy transfer. Though the various studies on prediction and removal of fouling was conducted by numerous scientists, this problem is still unresolved in industrial process and is responsible for huge environmental damage and economic losses. This investigation provides a comprehensive overview of crystallization fouling in heat exchangers. Various factors affecting the deposition of crystallization foulaning such as fluid temperature, flow velocity, surface material and roughness, concentration and boiling are systematically reviewed. Accuracy and uncertainty of different equipment and experimental studies are discussed. In addition, fouling modelling is comprehensively discussed from earlier fundamental model to recent computational fluid dynamic and artificial neural networks model. Furthermore, mitigation of fouling with off-line and online approaches are chronologically discussed. Finally, an overview from environmental and economic prospective of fouling in heat exchangers are discussed. The future directions for crystallization fouling in heat exchangers are emphasized, which will support the researchers and industries to retard fouling and achieve economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

C :

Concentration (gL−1)

D :

Diffusion coefficient (m2s−1)

\(\Delta E_{12}^{{{\text{TOT}}}}\) :

Total interaction energy (J)

h :

Convection heat transfer coefficient (Wm−2 K−1)

K m :

Fluid deposit mass transfer coefficient (ms−1)

K r :

Rate of reaction (m4kg−1 s−1)

\(K_{{\text{s}}}^{\prime }\) :

Deposit solubility product

m :

Mass (kg)

:

Mass flow rate (kg s−1)

n :

Order of reaction

Q :

Heat (J)

R :

Thermal resistance (m2KW−1)

Ra :

Arithmetic mean aberration

Re:

Reynold number

Rz :

Average surface roughness depth (µm)

Sh:

Sherwood number

t :

Time (s)

T :

Temperature (K, °C)

U :

Overall heat transfers coefficient (Wm−2 K−1)

v :

Velocity (ms−1)

Wa* :

Work of adhesion

x :

Thickness (m)

ƛ :

Thermal Conductivity, Wm K−1

β :

Inverse of time constant, s−1

τ :

Shear stress, Nm−2

ρ :

Density, kg m−3

* :

Asymptotic

b:

Bulk solution

c:

Clean

d:

Deposit

f:

Fouling

r:

Removal

sat:

Saturation

ANN:

Artificial neural network

AEMF:

Altering electromagnetic field

ANNM:

Artificial neural network model

CFD:

Computational fluid dynamic

DTPA:

Diethylene triamine pentaacetate

EAF:

Electronic antifouling

EDM:

Electric discharge machining

EDTA:

Ethylenediaminetetraacetic acid

FFNN:

Feed-forward neural network

GDP:

Gross domestic product

GNP:

Gross national product

MWCNT:

Multi-walled carbon nanotubes

PTFE:

Polytetrafluoroethylene

SCMC:

Sodium carboxymethyl cellulose

SEM:

Scanning electron microscopy

SWRO:

Sea water reverse osmosis

US:

Ultrasonic

USD:

United States dollar

VG:

Vortex generator

XRD:

X-ray diffraction

References

  1. Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Mixed salt crystallisation fouling. Chem Eng Process Process Intensif. 2000;39:29–43.

    Article  CAS  Google Scholar 

  2. Arasteh H, Mashayekhi R, Ghaneifar M, Toghraie D, Afrand M. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. J Therm Anal Calorim. 2020;141:1669–85. https://doi.org/10.1007/s10973-019-08870-w.

    Article  CAS  Google Scholar 

  3. Kazi SN, Duffy GG, Chen XD. Mineral scale formation and mitigation on metals and a polymeric heat exchanger surface. Appl Therm Eng. 2010;30:2236–42. https://doi.org/10.1016/j.applthermaleng.2010.06.005.

    Article  CAS  Google Scholar 

  4. Zhao X, Chen XD. A Critical Review of basic crystallography to salt crystallization fouling in heat exchangers. Heat Transf Eng. 2013;34:719–32.

    Article  CAS  Google Scholar 

  5. Berce J, Zupančič M, Može M, Golobič I. A review of crystallization fouling in heat exchangers. Processes. 2021;9:66.

    Article  Google Scholar 

  6. Bott TR. Fouling Note Book [Internet]. Rugby United Kingdom; 1990. https://www.osti.gov/etdeweb/biblio/5299249.

  7. Albert F, Augustin W, Scholl S. Roughness and constriction effects on heat transfer in crystallization fouling. Chem Eng Sci. 2011;66:499–509. https://doi.org/10.1016/j.ces.2010.11.021.

    Article  CAS  Google Scholar 

  8. Förster M, Augustin W, Bohnet M. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chem Eng Process Process Intensif. 1999;38:449–61.

    Article  Google Scholar 

  9. Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Mathematical modelling of mixed salt precipitation during convective heat transfer and sub-cooled flow boiling. Chem Eng Sci. 2005;60:5078–88.

    Article  CAS  Google Scholar 

  10. Bansal B, Chen XD, Muller-Steinhagen H. Deposition and removal mechanisms during calcium sulfate fouling in heat exchangers. Int J Transp Phenom. 2005;7:1–22.

    CAS  Google Scholar 

  11. Heberle A, Schaber K. Modeling of fouling on packings in absorption columns. AIChE J. 2002;48:2722–31.

    Article  CAS  Google Scholar 

  12. Muller-Steinhagen H. The ultimate challenge for heat exchanger design. In: 6th International symposium transport phenomena thermal engineering. Seoul Korea; 1993. p. 811–23.

  13. Kazi SN. Fouling and fouling mitigation of calcium compounds on heat exchangers by novel colloids and surface modifications. Rev Chem Eng. 2020;36:653–85.

    Article  CAS  Google Scholar 

  14. Vosough A, Assari MR, Peyghambarzadeh SM. Experimental measurement of heat transfer coefficient and mass of deposited CaSO4 in subcooled flow boiling condition. J Comput Appl Mech. 2019;50:308–14.

    Google Scholar 

  15. Oon CS, Kazi SN, Hakimin MA, Abdelrazek AH, Mallah AR, Low FW, et al. Heat transfer and fouling deposition investigation on the titanium coated heat exchanger surface. Poweder Technol. 2020;373:671–80. https://doi.org/10.1016/j.powtec.2020.07.010.

    Article  CAS  Google Scholar 

  16. Song KS, Lim J, Yun S, Kim D, Kim Y. Composite fouling characteristics of CaCO3 and CaSO4 in plate heat exchangers at various operating and geometric conditions. Int J Heat Mass Transf. 2019;136:555–62. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.032.

    Article  CAS  Google Scholar 

  17. Singh A. Heat Exchanger Fouling By Precipitation Of Calcium Phosphates By Atmajeet Singh B. Tech., Indian Institute of Technology, New Delhi, India; A Thesis in Partial Fulfilment of the Requirements for the Degree of Master of Applied Science in the Faculty Office; 1992.

  18. Kern D. A theoretical analysis of thermal surface fouling. Br Chem Eng. 1959;4:258–62.

    Google Scholar 

  19. Kazi MSN. Heat transfer to fibre suspensions: studies in fibre characterisation and fouling mitigation. University of Aukland; 2001.

  20. Epstein N. Thinking about heat transfer fouling: a 5 × 5 matrix. Heat Transf Eng. 1983;4:43–56.

    Article  CAS  Google Scholar 

  21. Kazi SN. Water-formed deposits fundamentals and mitigation strategies. Koch A, editor. Susan Dennis; 2022.

  22. Taborek J, Hewitt GF, Afgan N. Heat exhangers: theory and practice. Washington, DC: Hemisphere Publishing Corp; 1983.

    Google Scholar 

  23. Melo LF, Bott TR, Berando CA. Fouling science and technology. North Atl Treaty Organ Sci Aff Div [Internet]. Alvor, Algarve, Portugal; 1988. https://www.worldcat.org/title/fouling-science-and-technology/oclc/17954359

  24. Shah RK. Research needs in low Reynolds number flow heat exchangers. Heat Transf Eng. 1981;3:49–61.

    Article  Google Scholar 

  25. Coletti F, Crittenden BD, Macchietto S. Basic science of the fouling process. Crude Oil Fouling Depos Charact Meas Model. 2015. https://doi.org/10.1016/B978-0-12-801256-7.00002-6.

  26. Geddert T, Bialuch I, Augustin W, Scholl S. Extending the induction period of crystallization fouling through surface coating. Heat Transf Eng. 2009;30:868–75.

    Article  CAS  Google Scholar 

  27. Pugh SJ, Hewitt GF, Müller-Steinhagen H. Fouling during the use of seawater as coolant—the development of a user guide. Heat Transf Eng. 2005;26:35–43.

    Article  CAS  Google Scholar 

  28. Kazi SN. Fouling and fouling mitigation on heat exchanger surfaces. Heat Exch Basics Des Appl. 2012;66:6.

    Google Scholar 

  29. Besevic P, Clarke SM, Kawaley G, Wilson DI. Effect of silica on deposition and ageing of calcium carbonate fouling layers. Heat Exch Fouling Clean. 2017;66:58–66.

    Google Scholar 

  30. Sileri D, Sahu K, Ding H, Matar OK. Mathematical modelling of asphatenes deposition and removal in crude distillation units. In: International conference heat exchange fouling Clean VIII. 2009. p. 245–51.

  31. Lv Y, Lu K, Ren Y. Composite crystallization fouling characteristics of normal solubility salt in double-pipe heat exchanger. Int J Heat Mass Transf. 2020;66:156.

    Google Scholar 

  32. Choi Y, Naidu G, Jeong S, Lee S, Vigneswaran S. Effect of chemical and physical factors on the crystallization of calcium sulfate in seawater reverse osmosis brine. Desalination. 2018;426:78–87. https://doi.org/10.1016/j.desal.2017.10.037.

    Article  CAS  Google Scholar 

  33. Chong TH, Sheikholeslami R. Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation. Chem Eng Sci. 2001;56:5391–400.

    Article  CAS  Google Scholar 

  34. Al-Gailani A, Sanni O, Charpentier TVJ, Crisp R, Bruins JH, Neville A. Examining the effect of ionic constituents on crystallization fouling on heat transfer surfaces. Int J Heat Mass Transf. 2020;160:120180. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120180.

    Article  CAS  Google Scholar 

  35. Krömer K, Will S, Loisel K, Nied S, Detering J. Scale formation and mitigation of mixed salts in horizontal tube falling film evaporators for seawater desalination scale formation and mitigation of mixed salts in horizontal tube falling film evaporators for seawater desalination. Heat Transf Eng. 2015;66:37–41.

    Google Scholar 

  36. Lugo-Granados H, Tamakloe EK, Picón-Núñez M. Controlling scaling in heat exchangers through the use of fouling design curves. Process Integr Optim Sustain. 2020;4:111–20.

    Article  Google Scholar 

  37. Kazi SN, Duffy GG, Chen XD. Fouling and fouling mitigation on different heat exchanging. In: Proceedings of the international conference heat exchange fouling cleaning VIII—2009. 2009. p. 367–77.

  38. Hou TK. Fouling and its mitigation on heat exchanger surfaces by additives and catalytic materials Teng Kah Hou A thesis submitted in partial fulfillment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy This research; 2018.

  39. Höfling V, Augustin W, Bohnet M. Heat exchanger fouling and cleaning: fundamentals and applications crystallization fouling of the aqueous. 2003.

  40. Augustin W, Bohnet M. Effect of pH-value on fouling behaviour of heat exchangers. 2018.

  41. Schnöing L, Augustin W, Scholl S. Fouling mitigation in food processes by modification of heat transfer surfaces: a review. Food Bioprod Process. 2020;121:1–19. https://doi.org/10.1016/j.fbp.2020.01.013.

    Article  CAS  Google Scholar 

  42. Schoenitz M, Grundemann L, Augustin W, Scholl S. Fouling in microstructured devices: a review. Chem Commun. 2015;51:8213–28. https://doi.org/10.1039/C4CC07849G.

    Article  CAS  Google Scholar 

  43. Wray JL, Daniels F. Precipitation of calcite and aragonite. J Am Chem Soc. 1957;79:2031–4.

    Article  CAS  Google Scholar 

  44. Wang G, Zhu L, Liu H, Li W. Zinc-graphite composite coating for anti-fouling application. Mater Lett. 2011;65:3095–7. https://doi.org/10.1016/j.matlet.2011.06.096.

    Article  CAS  Google Scholar 

  45. Sheikholeslami R, Ng M. Calcium sulfate precipitation in the presence of nondominant calcium carbonate: thermodynamics and kinetics. Ind Eng Chem Res. 2001;40:3570–8.

    Article  CAS  Google Scholar 

  46. Dong L, Crittenden BD, Yang M. Fouling characteristics of water–CaSO4 solution under surface crystallization and bulk precipitation. Int J Heat Mass Transf. 2021;66:180.

    Google Scholar 

  47. Ataki A, Kiepfer H, Bart HJ. Investigations on crystallization fouling on PEEK films used as heat transfer surfaces: experimental results. Heat Mass Transf und Stoffuebertragung Heat Mass Transf. 2020;56:1443–52.

  48. Hatch G. Evaluation of scaling tendencies. Mater Prot Perform. 1973;12:49–50.

    Google Scholar 

  49. Hasson D, Zahavi J. Mechanislm of calcium sulfate scale deposition o n heat-transfer surfaces. Ind Eng Chem Fundam. 1970;9:1–10.

    Article  CAS  Google Scholar 

  50. Teng KH, Kazi SN, Amiri A, Habali AF, Bakar MA, Chew BT, et al. Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces. Powder Technol. 2017;315:216–26. https://doi.org/10.1016/j.powtec.2017.03.057.

    Article  CAS  Google Scholar 

  51. Kazi SN, Duffy GG, Chen XD. Fouling and fouling mitigation on heated metal surfaces. Desalination. 2012;288:126–34. https://doi.org/10.1016/j.desal.2011.12.022.

    Article  CAS  Google Scholar 

  52. Al-Gailani A, Sanni O, Charpentier TVJ, Crisp R, Bruins JH, Neville A. Inorganic fouling of heat transfer surface from potable water during convective heat transfer. Appl Therm Eng. 2021;184:116271. https://doi.org/10.1016/j.applthermaleng.2020.116271.

    Article  CAS  Google Scholar 

  53. Ren L, Cheng Y, Wang Q, Tian X, Yang J, Zhang D. Relationship between corrosion product and fouling growth on mild steel, copper and brass surface. Colloids Surf A Physicochem Eng Asp. 2020;124–502. https://doi.org/10.1016/j.colsurfa.2020.124502

  54. Ren L, Cheng Y, Wang Q, Yang J. Simulation of the relationship between calcium carbonate fouling and corrosion of iron surface. Colloids Surfaces A Physicochem Eng Asp. 2019;66:1238825. https://doi.org/10.1016/j.colsurfa.2019.123882.

    Article  CAS  Google Scholar 

  55. Wang J, Wang L, Miao R, Lv Y, Wang X, Meng X, et al. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: characteristics and mechanisms. Water Res. 2016;91:203–13. https://doi.org/10.1016/j.watres.2016.01.019.

    Article  CAS  PubMed  Google Scholar 

  56. Cooper A, Suitor JW, Usher JD. Cooling water fouling in plate heat exchangers. Heat Transf Eng. 1980;1:50–5.

    Article  CAS  Google Scholar 

  57. Han Z, Xu Z, Wang J. CaSO4 fouling characteristics on the rectangular channel with half-cylinder vortex generators. Appl Therm Eng. 2018;128:1456–63. https://doi.org/10.1016/j.applthermaleng.2017.09.051.

    Article  CAS  Google Scholar 

  58. Xu Z, Zhao Y, Wang J, Chang H. Inhibition of calcium carbonate fouling on heat transfer surface using sodium carboxymethyl cellulose. Appl Therm Eng. 2019;148:1074–80. https://doi.org/10.1016/j.applthermaleng.2018.11.088.

    Article  CAS  Google Scholar 

  59. Hasan BO, Nathan GJ, Ashman PJ, Craig RA, Kelso RM. The use of turbulence generators to mitigate crystallization fouling under cross flow conditions. Desalination. 2012;288:108–17. https://doi.org/10.1016/j.desal.2011.12.019.

    Article  CAS  Google Scholar 

  60. Samadifar M, Toghraie D. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl Therm Eng. 2018;133:671–81. https://doi.org/10.1016/j.applthermaleng.2018.01.062.

    Article  Google Scholar 

  61. Hasan BO, Jwair EA, Craig RA. The effect of heat transfer enhancement on the crystallization fouling in a double pipe heat exchanger. Exp Therm Fluid Sci. 2017;86:272–80. https://doi.org/10.1016/j.expthermflusci.2017.04.015.

    Article  CAS  Google Scholar 

  62. Al-Janabi A, Malayeri MR. A criterion for the characterization of modified surfaces during crystallization fouling based on electron donor component of surface energy. Chem Eng Res Des. 2015;100:212–27. https://doi.org/10.1016/j.cherd.2015.05.033.

    Article  CAS  Google Scholar 

  63. Großerichter D, Stichlmair J. Crystallization fouling in packed columns. Chem Eng Res Des. 2003;81:68–73.

    Article  Google Scholar 

  64. Zhao L, Tang W, Wang L, Li W, Minkowycz WJ. Heat transfer and fouling characteristics during falling film evaporation in a vertical sintered tube. Int Commun Heat Mass Transf. 2019;109:104388. https://doi.org/10.1016/j.icheatmasstransfer.2019.104388.

    Article  Google Scholar 

  65. Zettler HU, Weiß M, Zhao Q, Müller-Steinhagen H. Influence of surface properties and characteristics on fouling in plate heat exchangers. Heat Transf Eng. 2005;26:3–17.

    Article  CAS  Google Scholar 

  66. Feurstein G, Rampf HM. Der Einfluss rechteckiger Rauhigkeiten auf den Waermeuebergang und den Druckabfall in turbulenter Ringspaltstroemung. 1969;2:19–30.

  67. Taylor RP, Hosni MH, Garner JW, Coleman HW. Thermal boundary condition effects on heat transfer in turbulent rough-wall boundary layers. Wärme - und Stoffübertragung. 1992;27:131–40.

    Article  CAS  Google Scholar 

  68. Augustin M, Bohnet W. Effect of surface structure and ph-value on fouling behaviour of heat exchangers. Transp Phenom Therm Eng. 1993;2:884–9.

    Google Scholar 

  69. Sheriff N, Gumley P. Heat-transfer and friction properties of surfaces with discrete roughnesses. Int J Heat Mass Transf. 1966;9:1297–320.

    Article  CAS  Google Scholar 

  70. Lei C, Peng Z, Day T, Yan X, Bai X, Yuan C. Experimental observation of surface morphology effect on crystallization fouling in plate heat exchangers. Int Commun Heat Mass Transf. 2011;38:25–30. https://doi.org/10.1016/j.icheatmasstransfer.2010.10.006.

    Article  CAS  Google Scholar 

  71. Yoon J, Lund DB. Magnetic treatment of milk and surface treatment of plate heat exchangers: effects on milk fouling. J Food Sci. 1994;59:964–9.

    Article  CAS  Google Scholar 

  72. McGuire J, Swartzel KR. On the use of water in the measurement of solid surface tension. Surf Interface Anal. 1987;10:430–3.

    Article  CAS  Google Scholar 

  73. Herz A, Malayeri MR, Müller-steinhagen H. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions. Energy Convers Manag. 2008;49:3381–6.

    Article  CAS  Google Scholar 

  74. Al-otaibi DA, Hashmi MSJ, Yilbas BS. Fouling resistance of brackish water: comparision of fouling characteristics of coated carbon steel and titanium tubes. Exp Therm Fluid Sci. 2014;55:158–65. https://doi.org/10.1016/j.expthermflusci.2014.03.010.

    Article  CAS  Google Scholar 

  75. Abd-Elhady MS, Malayeri MR. Transition of convective heat transfer to subcooled flow boiling due to crystallization fouling. Appl Therm Eng. 2016;92:122–9. https://doi.org/10.1016/j.applthermaleng.2015.09.093.

    Article  CAS  Google Scholar 

  76. Rashidi S, Hormozi F, Mohsen M. Fundamental and subphenomena of boiling heat transfer. J Therm Anal Calorim. 2020;6:66. https://doi.org/10.1007/s10973-020-09468-3.

    Article  CAS  Google Scholar 

  77. Malayeri MR, Müller-steinhagen H, Bartlett TH. Fouling of tube bundles under pool boiling conditions. Chem Eng Sci. 2005;60:1503–13.

    Article  CAS  Google Scholar 

  78. Haghshenasfard M, Yeoh GH, Dahari M, Hooman K. On numerical study of calcium sulphate fouling under sub-cooled flow boiling conditions. Appl Therm Eng. 2015. https://doi.org/10.1016/j.applthermaleng.2015.01.079.

  79. Peyghambarzadeh SM, Vatani A, Jamialahmadi M. Application of asymptotic model for the prediction of fouling rate of calcium sulfate under subcooled fl ow boiling. Appl Therm Eng. 2012;39:105–13. https://doi.org/10.1016/j.applthermaleng.2011.12.042.

    Article  CAS  Google Scholar 

  80. Chen JC. Transfer to saturated fluids in convective flow. 1966.

  81. Dash S, Rapoport L, Varanasi KK. Crystallization-induced fouling during boiling: formation mechanisms to mitigation approaches. Langmuir. 2018;34:782–8.

    Article  CAS  PubMed  Google Scholar 

  82. Berce J, Mo M, Golobi I. Infrared thermography observations of crystallization fouling in a plate heat exchanger. 2023. p. 224.

  83. Shaikh K, Kazi SN, Mohd Zubir MN, Wong K, Binti Mohd Yusoff SA, Ahmed Khan W, et al. Mitigation of CaCO3 fouling on heat exchanger surface using green functionalized carbon nanotubes (GFCNT) coating. Therm Sci Eng Prog. 2023;42:101–878.

  84. Cao S, Zou M, Zhao B, Gao H, Wang G. Investigation of corrosion and fouling resistance of Ni–P-nanoparticles composite coating using online monitoring technology. Elsevier Masson SAS; 2023. p. 184.

  85. Müller-Steinhagen H, Malayeri MR, Watkinson AP. Heat exchanger fouling: mitigation and cleaning strategies. Heat Transf Eng. 2011;32:189–96.

    Article  Google Scholar 

  86. Miansari M, Valipour MA, Arasteh H, Toghraie D. Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design. J Therm Anal Calorim. 2020;139:3151–64. https://doi.org/10.1007/s10973-019-08653-3.

    Article  CAS  Google Scholar 

  87. Pugh SJ, Hewitt GF, Müller-Steinhagen H. Fouling during the use of fresh water as coolant the development of a user guide. Heat Transf Eng. 2009;30:851–8.

    Article  CAS  Google Scholar 

  88. Maddahi MH, Hatamipour MS, Jamialahmadi M. Experimental study of calcium sulfate fouling in a heat exchanger during liquid–solid fluidized bed with cylindrical particles. Int J Therm Sci. 2018;125:11–22. https://doi.org/10.1016/j.ijthermalsci.2017.11.007.

    Article  CAS  Google Scholar 

  89. Maddahi MH, Hatamipour MS, Jamialahmadi M. A model for the prediction of thermal resistance of calcium sulfate crystallization fouling in a liquid–solid fluidized bed heat exchanger with cylindrical particles. Int J Therm Sci. 2019;145:106017. https://doi.org/10.1016/j.ijthermalsci.2019.106017.

    Article  CAS  Google Scholar 

  90. Pronk P, Infante Ferreira CA, Witkamp GJ. Mitigation of ice crystallization fouling in stationary and circulating liquid–solid fluidized bed heat exchangers. Int J Heat Mass Transf. 2010;53:403–11. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.016.

    Article  CAS  Google Scholar 

  91. Pronk P, Infante Ferreira CA, Witkamp GJ. Prevention of crystallization fouling during eutectic freeze crystallization in fluidized bed heat exchangers. Chem Eng Process Process Intensif. 2008;47:2140–9.

    Article  CAS  Google Scholar 

  92. Sousa MFB, Bertran CA. New methodology based on static light scattering measurements for evaluation of inhibitors for in bulk CaCO3 crystallization. J Colloid Interface Sci. 2014;420:57–64. https://doi.org/10.1016/j.jcis.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  93. Shih W-Y, Albrecht K, Glater J, Cohen Y. A dual-probe approach for evaluation of gypsum crystallization in response to antiscalant treatment. Desalination. 2004;169:213–21.

    Article  CAS  Google Scholar 

  94. Müller-Steinhagen H, Malayeri MR, Watkinson AP. Heat exchanger fouling: environmental impacts. Heat Transf Eng. 2009;30:773–6.

    Article  Google Scholar 

  95. Müller-Steinhagen H. Heat transfer fouling: 50 years after the Kern and Seaton model. Heat Transf Eng. 2011;32:1–13.

    Article  Google Scholar 

  96. Moradi A, Toghraie D, Isfahani AHM, Hosseinian A. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim. 2019;137:1797–807. https://doi.org/10.1007/s10973-019-08076-0.

    Article  CAS  Google Scholar 

  97. Shahsavar A, Godini A, Sardari PT, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J Therm Anal Calorim. 2019;137:1031–43. https://doi.org/10.1007/s10973-018-07997-6.

    Article  CAS  Google Scholar 

  98. Kazi SN, Teng KH, Zakaria MS, Sadeghinezhad E, Bakar MA. Study of mineral fouling mitigation on heat exchanger surface. Desalination. 2015;367:248–54. https://doi.org/10.1016/j.desal.2015.04.011.

    Article  CAS  Google Scholar 

  99. Teng KH, Amiri A, Kazi SN, Bakar MA, Chew BT. Fouling mitigation on heat exchanger surfaces by EDTA-treated MWCNT-based water nanofluids. J Taiwan Inst Chem Eng. 2016;60:445–52. https://doi.org/10.1016/j.jtice.2015.11.006.

    Article  CAS  Google Scholar 

  100. Qian J, Wang J, Yue Z, Wu W. Surface crystallization behavior of calcium carbonate in the presence of SMPs secreted by SRB. J Cryst Growth. 2019;525:125208. https://doi.org/10.1016/j.jcrysgro.2019.125208.

    Article  CAS  Google Scholar 

  101. Benecke J, Rozova J, Ernst M. Anti-scale effects of select organic macromolecules on gypsum bulk and surface crystallization during reverse osmosis desalination. Sep Purif Technol. 2018;198:68–78. https://doi.org/10.1016/j.seppur.2016.11.068.

    Article  CAS  Google Scholar 

  102. Teng KH, Amiri A, Kazi SN, Bakar MA, Chew BT, Al-Shamma’a A, et al. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids. Appl Therm Eng. 2017;110:495–503. https://doi.org/10.1016/j.applthermaleng.2016.08.181.

  103. Al-Janabi A, Malayeri MR, Müller-Steinhagen H. Experimental fouling investigation with electroless Ni–P coatings. Int J Therm Sci. 2010;49:1063–71.

    Article  CAS  Google Scholar 

  104. Yang Q, Ding J, Shen Z. Investigation on fouling behaviors of low-energy surface and fouling fractal characteristics. Chem Eng Sci. 2000;55:797–805.

    Article  CAS  Google Scholar 

  105. Yang Q, Liu Y, Gu A, Ding J, Shen Z. Investigation of induction period and morphology of CaCO3 fouling on heated surface. Chem Eng Sci. 2002;57:921–31.

    Article  CAS  Google Scholar 

  106. Cheng YH, Zou Y, Cheng L, Liu W. Effect of the microstructure on the anti-fouling property of the electroless Ni–P coating. Mater Lett. 2008;62:4283–5.

    Article  CAS  Google Scholar 

  107. Cheng YH, Chen HY, Zhu ZC, Jen TC, Peng YX. Experimental study on the anti-fouling effects of Ni–Cu–P–PTFE deposit surface of heat exchangers. Appl Therm Eng. 2014;68:20–5. https://doi.org/10.1016/j.applthermaleng.2014.04.003.

    Article  CAS  Google Scholar 

  108. He ZR, Liu CS, Gao HY, Jie XH, Lian WQ. Experimental study on the anti-fouling effects of EDM machined hierarchical micro/nano structure for heat transfer surface. Appl Therm Eng. 2019;162:66.

    Article  Google Scholar 

  109. Mayer M, Bucko J, Benzinger W, Dittmeyer R, Augustin W, Scholl S. The impact of crystallization fouling on a microscale heat exchanger. Exp Therm Fluid Sci. 2012;40:126–31. https://doi.org/10.1016/j.expthermflusci.2012.02.007.

    Article  CAS  Google Scholar 

  110. Vosough A, Peyghambarzadeh SM, Assari MR. Influence of thermal shock on the mitigation of calcium sulfate crystallization fouling under subcooled flow boiling condition. Appl Therm Eng. 2020;164:114434. https://doi.org/10.1016/j.applthermaleng.2019.114434.

    Article  CAS  Google Scholar 

  111. Wang J, Liang Y. Anti-fouling effect of axial alternating electromagnetic field on calcium carbonate fouling in U-shaped circulating cooling water heat exchange tube. Int J Heat Mass Transf. 2017;115:774–81. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.097.

    Article  CAS  Google Scholar 

  112. Fan C, Cho YI. Microscopic observation of calcium carbonate particles: validation of an electronic anti-fouling technology. Int Commun Heat Mass Transf. 1997;24:747–56.

    Article  CAS  Google Scholar 

  113. Epstein RSTM and N. Optimum cycles for falling rate processes. Depertment chmeical Eng Univ Birtish Colomb. 1981. p. 631–3.

  114. Pogiatzis T, Ishiyama EM, Paterson WR, Vassiliadis VS, Wilson DI. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing. Appl Energy. 2012;89:60–6. https://doi.org/10.1016/j.apenergy.2011.01.063.

    Article  CAS  Google Scholar 

  115. Diaby AL, Miklavcic SJ, Addai-Mensah J. Optimization of scheduled cleaning of fouled heat exchanger network under ageing using genetic algorithm. Chem Eng Res Des. 2016;113:223–40. https://doi.org/10.1016/j.cherd.2016.07.013.

    Article  CAS  Google Scholar 

  116. Di Pretoro A, D’Iglio F, Manenti F. Optimal cleaning cycle scheduling under uncertain conditions: a flexibility analysis on heat exchanger fouling. Processes. 2021;9:1–18.

    Article  Google Scholar 

  117. Al Ismaili R, Lee MW, Wilson DI, Vassiliadis VS. Optimisation of heat exchanger network cleaning schedules: incorporating uncertainty in fouling and cleaning model parameters. Comput Chem Eng. 2019;121:409–21. https://doi.org/10.1016/j.compchemeng.2018.11.009.

    Article  CAS  Google Scholar 

  118. Hasson D. Rate of decrease of heat transfer due to scale deposition. Dechema-Monogr. 1962;47:233–52.

    CAS  Google Scholar 

  119. Hasson D, Avriel M, Resnick W, Rozenman T, Windreich S. Mechaniism of calcium carbonate heat-transfer surfaces. Ind Eng Chem Res. 1968;7:59–65.

    Google Scholar 

  120. Bansal B, Chen XD, Müller-Steinhagen H. Analysis of “classical” deposition rate law for crystallisation fouling. Chem Eng Process Process Intensif. 2008;47:1201–10.

    Article  CAS  Google Scholar 

  121. Nikoo AH, Malayeri MR. Incorporation of surface energy properties into general crystallization fouling model for heat transfer surfaces. Chem Eng Sci. 2020;215:115461. https://doi.org/10.1016/j.ces.2019.115461.

    Article  CAS  Google Scholar 

  122. Bohnet M. Fouling of heat transfer surfaces. Chem Eng Technol. 1987;10:113–25.

    Article  Google Scholar 

  123. Segev R, Hasson D, Reegen S. Rigorous modeling of the kinetics of calcium carbonate deposit formation. AIChE J. 2012;58:1222–9.

    Article  CAS  Google Scholar 

  124. Yang M, Young A, Niyetkaliyev A, Crittenden B. Modelling fouling induction periods. Int J Therm Sci. 2012;51:175–83. https://doi.org/10.1016/j.ijthermalsci.2011.08.008.

    Article  Google Scholar 

  125. Briançon S, Colson D, Klein JP. Modelling of crystalline layer growth using kinetic data obtained from suspension crystallization. Chem Eng J. 1998;70:55–64.

    Article  Google Scholar 

  126. Jamialahmadi M, Müller-Steinhagen H. Heat exchanger fouling and cleaning in the dihydrate process for the production of phosphoric acid. Chem Eng Res Des. 2007;85:245–55.

    Article  CAS  Google Scholar 

  127. Esawy M, Malayeri MR. Modeling of CaSO4 crystallization fouling of finned tubes during nucleate pool boiling. Chem Eng Res Des. 2017;118:51–60. https://doi.org/10.1016/j.cherd.2016.11.030.

    Article  CAS  Google Scholar 

  128. Babuška I, Silva RS, Actor J. Break-off model for CaCO3 fouling in heat exchangers. Int J Heat Mass Transf. 2018;116:104–14.

    Article  Google Scholar 

  129. Kapustenko PO, Klemeš JJ, Matsegora OI, Arsenyev PY, Arsenyeva OP. Accounting for local thermal and hydraulic parameters of water fouling development in plate heat exchanger. Energy. 2019;174:1049–59.

    Article  Google Scholar 

  130. Souza ARC, Costa ALH. Modeling and simulation of cooling water systems subjected to fouling. Chem Eng Res Des. 2019;141:15–31. https://doi.org/10.1016/j.cherd.2018.09.012.

    Article  CAS  Google Scholar 

  131. Bobič M, Gjerek B, Golobič I, Bajsić I. Dynamic behaviour of a plate heat exchanger: influence of temperature disturbances and flow configurations. Int J Heat Mass Transf. 2020;163:66.

    Article  Google Scholar 

  132. Guelpa E, Verda V. Automatic fouling detection in district heating substations: Methodology and tests. Appl Energy. 2020;258:114059. https://doi.org/10.1016/j.apenergy.2019.114059.

    Article  Google Scholar 

  133. Davoudi E, Vaferi B. Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers. Chem Eng Res Des. 2018;130:138–53. https://doi.org/10.1016/j.cherd.2017.12.017.

    Article  CAS  Google Scholar 

  134. Aguel S, Meddeb Z, Jeday MR. Parametric study and modeling of cross-flow heat exchanger fouling in phosphoric acid concentration plant using artificial neural network. J Process Control. 2019;84:133–45.

    Article  CAS  Google Scholar 

  135. Sundar S, Rajagopal MC, Zhao H, Kuntumalla G, Meng Y, Chang HC, et al. Fouling modeling and prediction approach for heat exchangers using deep learning. Int J Heat Mass. 2020;159:66.

    Article  Google Scholar 

  136. Benyekhlef A, Mohammedi B, Hassani D, Hanini S. Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids. Water Sci Technol. 2021;84:538–51.

    Article  CAS  PubMed  Google Scholar 

  137. Sholahudin Rohman F, Muhammad D, Sudibyo, Nazri Murat M, Azmi A. Application of feed forward neural network for fouling thickness estimation in low density polyethylene tubular reactor. Mater Today Proc. 2022;63:S95–100. https://doi.org/10.1016/j.matpr.2022.02.037

  138. Brahim F, Augustin W, Bohnet M. Numerical simulation of the fouling on structured heat transfer surfaces (fouling). ECI Conf Heat Exch Fouling Clean Fundam Appl. 2003;RP1:121–9.

  139. Brahim F, Augustin W, Bohnet M. Numerical simulation of the fouling process. Int J Therm Sci. 2003;42:323–34.

    Article  CAS  Google Scholar 

  140. Walker P, Sheikholeslami R. Assessment of the effect of velocity and residence time in CaSO4 precipitating flow reaction. Chem Eng Sci. 2003;58:3807–16.

    Article  CAS  Google Scholar 

  141. Xiao J, Li Z, Han J, Pan F, Woo MW, Chen XD. A systematic investigation of the fouling induction phenomena with artificial crystal structures and distributions. Chem Eng Sci. 2017;168:137–55. https://doi.org/10.1016/j.ces.2017.04.043.

    Article  CAS  Google Scholar 

  142. Yang J. Computational fluid dynamics studies on the induction period of crude oil fouling in a heat exchanger tube. Int J Heat Mass Transf. 2020;159:120129. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120129.

    Article  Google Scholar 

  143. Zhang F, Xiao J, Chen XD. Towards predictive modeling of crystallization fouling: a pseudo-dynamic approach. Food Bioprod Process. 2015;93:188–96. https://doi.org/10.1016/j.fbp.2014.10.017.

    Article  CAS  Google Scholar 

  144. Ojaniemi U, Pättikangas T, Jäsberg A, Puhakka E, Koponen A. Computational fluid dynamics simulation of fouling of plate heat exchanger by phosphate calcium. Heat Transf Eng. 2021. https://doi.org/10.1080/01457632.2021.1963551.

    Article  Google Scholar 

  145. Daniali OA, Toghraie D, Eftekhari SA. Thermo-hydraulic and economic optimization of Iranol refinery oil heat exchanger with Copper oxide nanoparticles using MOMBO. Phys A Stat Mech Appl. 2020;540:123010. https://doi.org/10.1016/j.physa.2019.123010.

    Article  CAS  Google Scholar 

  146. Caputo AC, Pelagagge M, Salini P. Joint economic optimization of heat exchanger design and maintenance policy. Appl Therm Eng. 2011;31:1381–92.

    Article  Google Scholar 

  147. Ibrahim H. Fouling in heat exchangers. MATLAB A Fundam tool Sci Comput Eng Appl. 2012;3:57–96.

    Google Scholar 

  148. Elwerfalli A, Alsadaie S, Mujtaba IM. Estimation of shutdown schedule to remove fouling layers of heat exchangers using risk-based inspection (RBI). Processes. 2021;66:1–11.

    Google Scholar 

  149. Zhi-ming X, Zhong-bin Z, Shan-rang Y. Costs due to utility fouling in China; 2016.

  150. Awad M. Fouling of heat transfer surfaces; 2021;

  151. ESDU. Heat exchanger fouling in the pre-heat train of a crude oil distillation unit; 2005.

  152. Casanueva-Robles T, Bott TR. The environmental effect of heat exchanger fouling: a case study. In: Proceedings of the 6th international conference heat exchange fouling cleaning, challenges opportunities RP2; 2005. p. 5–10.

Download references

Acknowledgements

This study is supported financially under the Fundamental Research Grant Scheme awarded by the Ministry of Higher Education Malaysia with Grant Number: FRGS/1/2019/TK03/UM/02/12 (FP143-2019A). The authors also gratefully acknowledge the support from Grants, RMF0400-13-2021, ST049-2022, RK001-2022, Centre of Advanced Manufacturing and Material Processing  (AMMP), Centre for Energy Sciences(CES), Centre of Advanced Materials (CAM), Department of Mechanical Engineering, Universiti Malaya, and BUITEMS, Pakistan to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazi Md Salim Newaz or Mohd Nashrul Mohd Zubir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, K., Newaz, K.M.S., Zubir, M.N.M. et al. A review of recent advancements in the crystallization fouling of heat exchangers. J Therm Anal Calorim 148, 12369–12392 (2023). https://doi.org/10.1007/s10973-023-12544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12544-z

Keywords

Navigation